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Abstract

A method for spectral analysis of nonequidistantly spaced time series is presented: the CLEAN algorithm

performs an iterative deconvolution of the spectral window in the frequency domain. We demonstrate the capability
of the method on synthetic data examples and apply CLEAN to seismological data, in an example where we seek
temporal changes in elastic wave velocities. The observed periodic changes of phase di�erences consist of
frequencies, which in principle can be explained by the in¯uence of solid earth tides, but also by other e�ects with

similar periodicities. Only CLEAN enabled us to enlarge the time window over missing data segments until the
frequency resolution was accurate enough to rule out solid earth tides as cause for the observed periodic changes. A
MATLAB version of the CLEAN algorithm is available from the authors, or from the IAMG server. # 1999

Elsevier Science Ltd. All rights reserved.
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1. Introduction

A frequent dilemma in spectral analysis is the

incompleteness of the data record, either in the form

of occasional missing data or as larger gaps. Standard

data processing techniques, notably the fast Fourier

transformation, require data given on a regular equi-

distantly spaced grid, thus forcing the analyst to per-

form an interpolation. Artefacts from such

interpolations may be critical or in some cases even

dominate the resulting spectra. Standard techniques

are even less useful, if the data are per se given on a

grid, which is not equidistantly spaced.

This study addresses the computation of spectral in-

formation for time series with missing data including

the situations of occasional missing data, larger data

gaps and nonequidistantly spaced data. This problem

has been addressed before in a number of studies,

most of them in the astrophysical sciences. Also in

geosciences, many problems require a rigorous treat-

ment of the missing data problem. The purpose of this

paper is thus to present the missing data problem and

illustrate which di�culties can arise by simple interp-

olation or by an uncritical generalization of the

Fourier technique. We illustrate our preferred

approach and show an application in seismology,
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which could not be solved without a formal treatment

of the missing data problem.

A number of methods have been proposed for sol-

ving the missing data problem. Our study is closely re-

lated to that of Roberts et al. (1987) in using the

CLEAN method for spectral analysis in their compact

notation. In that method, knowledge of the sampling

function is used to perform a stepwise deconvolution

in the frequency domain. Although the performance of

CLEAN was so far tested only for noiseless data, we

obtain good results applying it to noisy data, in syn-

thetic as well as in real data.

The ®rst two sections of the paper state the spectral

analysis problem of unevenly spaced discrete data,

describe the CLEAN method and give the Roberts et

al. (1987) algorithm to compute CLEAN numerically.

We illustrate the remarkable stability of the technique

in a number of examples and ®nally apply the tech-

nique to real data.

The application, which motivated our study, stems

from seismology. We investigate temporal changes of

elastic propagation velocities beneath the seismological

GERESS array in Bavaria, Germany. We use a con-

tinuously emitting source (machine noise) to estimate

Fig. 1. Illustration of e�ect of uneven sampling. On left full (continuous) time series (A), sampling function (C) and sampled time

series (dots in E), as well as reconstructed data from dirty spectrum (line in E) and from CLEAN spectrum (G) are shown. On

right are shown corresponding spectra, of full time series (B), sampling function (D), sampled time series (F) and cleaned spectrum

(H). Spectrum of sampled time series (F) corresponds to convolving spectrum of analytical function (B) with spectrum of sampling

function (D). Note, that data reconstructed from dirty spectrum closely ®t zero values in former gaps (shaded area), whereas recon-

struction from CLEAN spectrum ®ts values of full time series (A) properly.
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relative velocity changes over a time span of 17 days.
In this application, the missing data problem arises

from the fact that seismic-event-contaminated time
windows could not be used for the analysis. Thus, only
33% of the data were used for analysis. The velocities

(phase di�erences) clearly show periodic changes with
period in the vicinity of 1/day and 2/day. We were par-
ticularly interested whether those changes could be

caused by solid earth tides and tried to identify the
characteristic spectral component of the lunar tide M2
in the frequency domain (at 1.9324/day). Among sev-

eral approaches, only CLEAN gave su�cient stability
to rule out unambiguously solid earth tides as the
cause for the observed periodic changes.

2. Problem statement

We begin with the Fourier transform of a function
f(t ) given for all times t. It is well-known that if f(t ) is

a square-integrable continuous function, it can be
reconstructed from a spectrum F(n )

f �t� �
�1
ÿ1

dnF�n�e2pint:

The spectrum itself is given by the Fourier trans-
form

F�n� � FT� f�t�� �
�1
ÿ1

dtf �t�eÿ2pint:

Consider now the discrete case, where data are given
only at N times tr. These times however are entirely
arbitrary. The ®nite number of data points is

fr � f �tr� r � 1, . . . ,N:

Such a discrete sampling may be introduced into the
continuous formulation using a window function (or

sampling function) s(t ), which may be conveniently
de®ned as

s�t� � 1

N

XN
r�1

d�tÿ tr�

with the Dirac delta function d(t ).
The sampled signal can then be written as

fs (t )=f(t ) s(t ). The Fourier transform of that sampled
signal is

Fs�n� � FT� fs�t�� � FT� f�t�s�t��

and from the Fourier convolution theorem

� F�n� 
 S�n� �
�1
ÿ1

dn 0F�n 0�S�nÿ n 0� : �1�

S(n ) is suitably termed the `spectral window func-

tion'

S�n� �
�1
ÿ1

dts�t�eÿ2pint � 1

N

XN
r�1

eÿ2pintr :

Fs (n ) is called the `dirty spectrum'

Fs�n� �
�1
ÿ1

dtfs�t�eÿ2pint � 1

N

XN
r�1

fre
ÿ2pintr �2�

since it contains the spectral information of the signal,

but is contaminated by the convolution with the spec-
tral window function S(n ). This contamination is illus-
trated in Fig. 1.

There are di�erent categories of sampling functions
s(t ). For evenly spaced sampling with a time interval
Dt

s�t� �
X1
r�ÿ1

d�tÿ rDt� r � ÿ1, . . . ,1

the spectral window function becomes

S�n� � 1

Dt

X1
r�ÿ1

d
�

nÿ r

Dt

�
:

Periodic sampling in the time domain with interval
Dt thus causes multiple peaks in the frequency domain
with interval 1/Dt. Introducing the Nyquist-frequency

nN=1/2Dt, the `dirty spectrum' is

Fs�n� � 1

Dt

"
F�n� �

X1
r�1
�F�nÿ 2rnN� � F�n� 2rnN��

#
:

If the function F(n ) is zero for |n|rnN, fs (t ) is fully
recoverable from Fs (n ). This is the well-known
sampling theorem. If the condition is satis®ed, the
spectrum up to nN is not contaminated. If the sampling

function is a box car

s�t� �
�
1 for t0RtRtN
0 otherwise

:

(®nite data length T=tNÿt0), the spectral window
function is a sinc-function

S�n� � sin�pnT �
pn

eÿpin�t1�tN�

which causes smearing in the spectrum (spectral leak-

age). The width of smearing (frequency resolution) is
controlled by the data length T (dn 1 1/T ). Even in
these two basic examples of discrete sampling and

®nite data-length complications occur, which may lead
to di�culties in interpreting the raw (dirty) spectra.
Thus the technique discussed in this paper is also use-
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ful in applications which do not involve data gaps or
arbitrary sampling. The focus however is on those situ-

ations that tend to conceal further the true spectrum.
They are illustrated later using numerical examples.
To understand better the properties of the dirty

spectrum, consider Eq. (2). Note that if data points are
missing among fr, the resulting Fs (n ) is equivalent to
the dirty spectrum of a data set, in which all missing

data are identically zero. This implicit assumption is
not desirable. Indeed, fs (t ) determined by the inverse
Fourier transform of the dirty spectrum Fs (n ) re¯ects

that implicit assumption (see Fig. 1e): it closely ®ts
zero values at these missing times.
We can remove this e�ect by eliminating the spectral

window function from the dirty spectrum. A straight-

forward deconvolution in the frequency domain, how-
ever, is not possible due to the (mostly zero) nature of
the sampling function (Roberts et al., 1987). This pro-

blem can be circumvented by estimating the (complex)
amplitude of a cosinusoidal, removing its in¯uence on
the dirty spectrum including its sidelobes and iterating

over this procedure.

3. The CLEAN algorithm

To illustrate how that can be done without invoking
a deconvolution we follow Roberts et al. (1987) con-

sidering an example of a single harmonic component

f �t� � A cos�2pn̂t� F� ,

with (real) amplitude A, frequency n̂ and phase F.
Transformation into the frequency domain yields the
spectrum

F�n� � ad�nÿ n̂� � ayd�n� n̂�

using $ for complex conjugation and a=(A/2) eiF for
(complex) amplitude. Now let f(t ) be sampled at N dis-
crete times

fs�t� � f �t�s�t� �
1

N

XN
r�1

f �t�d�tÿ tr� :

Using the convolution theorem we ®nd
Fs (n )=F(n ) 
 S(n ).
For the discrete time series the dirty spectrum Eq.

(1) becomes

Fs�n� � aS�nÿ n̂� � ayS�n� n̂� : �3�
If S(0)=1, we have at the peak frequency n̂

F�n̂� � a� ayS�2n̂� :

Writing F $ similarly and inserting into a $ we see

that we can determine the amplitude a of the peak, if
we know its frequency n̂

a�n̂� � Fs�n̂� ÿ F
y
s �n̂�S�2n̂�

1ÿ kS�2n̂�k2 �4�

The idea of the CLEAN formula is to use Eq. (4) to

®nd the (complex) amplitude of a cosinusoidal and
remove its contribution to the spectrum Fs including
all sidelobes using Eq. (3).

This is done by choosing the largest peak in the
dirty spectrum. This procedure is intuitive, but in prac-
tice several di�culties occur. First of all we can not

exactly determine n̂ by simply taking the maximum of
the dirty spectrum, since the peak in D is smeared by
the window spectrum and the interaction of aliases

from the positive and negative frequency range. This
problem becomes worse if several signals are present.
Therefore it is useful to remove only a fraction of its
contribution from the dirty spectrum. If this is done

iteratively, small errors in a�n̂� will be corrected in sub-
sequent iterations.
The iteration scheme given by Roberts et al. (1987)

is:

1. Compute the dirty spectrum Fs (n ).
2. Start the iteration with the initial residual spectrum

R 00Fs.
3. On the i'th iteration ®nd the maximum frequency

npeak in the previous residual spectrum R i ÿ 1 and

calculate its complex amplitude a(npeak) using Eq.
(4).

4. Use Eq. (3) to calculate the contribution of a(npeak)
to the dirty spectrum and form the residual spec-

trum R i by subtracting a fraction g (0 < g< 1) of
the result from R i ÿ 1:

Ri � Riÿ1 ÿ g��aiS�nÿ npeak� � �ai �yS�n� npeak��� :

Store the subtracted fraction ga i to a clean com-
ponent array at locations npeak> and ÿnpeak.

Continue the iteration until convergence criteria

are reached.
5. After the iteration, convolve the clean component

array with a Gaussian function to obtain a reason-
able frequency resolution. Finally add the residual

spectrum of the last iteration.

The iteration ought to proceed until the signal peaks
have been successively removed from the residual spec-

trum. Roberts et al. (1987) named several criteria to
de®ne stopping conditions for the noise-free situation.
A straightforward method is the prede®nition of a

threshold value for R i, so that the iteration stops, if R i

drops below that value. Any contribution below that
level is attributed to noise. In practice the de®nition of
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the noise level by visual inspection is critical and

strongly dependent on the spectral window function.

An automatic but expensive procedure is to base the

cuto� criterion on the mis®t to the data, which can be

computed only in the time domain. However, we feel
that it is most convenient to iterate until a prede®ned

maximum number of iteration steps is reached. That

number should be chosen large enough to ensure that

the iteration does not stop before the in¯uence of all
signal peaks has been removed. On the other hand, it

appears that the result is insensitive to over-iteration

(see the following section).

A limitation of the CLEAN algorithm is, that

according to Eq. (4) the spectrum of the sampling
function must be known up to twice the frequency of

the dirty spectrum. For this reason, cleaning of the
dirty spectrum is possible only up to half of the maxi-
mum frequency nmax.

4. Synthetic examples

CLEAN has been tested for the noise-free situation

(Roberts et al., 1987) with remarkable success (see also
the results in Fig. 1). Fig. 2 now demonstrates the
capability of CLEAN for signals buried in noise. The

Fig. 2. Data example of Fig. 1 with normally distributed noise added. Standard deviation of noise is 31% that of noiseless data.

On left, dirty spectrum and cleaned spectra after 1, 10, 100 and 500 iterations are shown ( g= 0.1). Right shows data reconstructed

from corresponding spectra (dots). Line marks noiseless continuous data. Bottom subplot shows mis®t to data depending on num-

ber of iteration steps. Circles indicate mis®t after 10, 100 and 500 iterations.
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data example is the same as in Fig. 1 with 31% nor-
mally distributed noise added. On the left-hand side of
Fig. 2 spectra are shown after di�erent numbers of

CLEAN iterations. Note that the mis®t to the data
calculated in the time domain approaches a constant
value of 3% which is reached after approximately 400

iteration steps. Therefore it is uncritical if the iteration
continues after all signal peaks have been removed
from the spectrum.

The next examples demonstrate the performance of
CLEAN to di�erent categories of sampling. Harmonic

content of the data and parameters for CLEAN (500
iterations with gain factor 0.1) are the same for all
examples.

We start with randomly sampled data: in Fig. 3A 94
randomly distributed points were eliminated from an
equidistantly spaced grid of 200 points. This leaves the

minimum time spacing ®xed by the sampling interval.
The resulting dirty spectrum shows both spectral com-
ponents, with the weaker component at 2 Hz nearly

covered by the `noise' of the spectral window. After
applying CLEAN, the harmonic content of the data
had been correctly unmasked.

In the second example (Fig. 3B) the data had been
sampled at 80 entirely arbitrary points. In contrast to

the ®rst example the original data grid was not regular.
Therefore the maximum frequency, which carries inde-
pendent information of the time series, is considerably

Fig. 3. Application of CLEAN to di�erent categories of missing data: (A) random sampling from regular grid, (B) arbitrary

sampling and (C) sampling with periodic data gaps. On left, sampled data in time domain are shown (dots). Corresponding dirty

spectra are shown in center subplots and cleaned spectra on right. In all cases, CLEAN successfully recovers spectral information.

On top, full time series (left) and its spectrum (right) are shown.
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larger than in the ®rst example (smaller minimum time

spacing) and the computation time increases. The dirty
spectrum is noisier than in the ®rst example and the
harmonic component at 2 Hz is entirely covered by the

`noise' of the spectral window. Again CLEAN succeeds
in recovering the true harmonic component of the
data.

The last example deals with the problem of regularly
sampled data with periodically distributed data misses.

In practice, reasons for periodic data misses may arise
from (a) the instrumentation itself, as trigger signals,
battery or hard disc changes etc. or (b) from period-

ically occurring contaminations of the data. The syn-
thetic data in Fig. 3C extract data groups of 7 samples
each from the regularly sampled time series. The spa-

cing between the gaps is 11 samples. The dirty spec-

trum shows the signal peaks at 1 and 2 Hz and
artefacts of the spectral window function. An interpret-
ation of the dirty spectrum is di�cult, since the spec-

tral window yields distinct peaks, one of them with a
similar magnitude than the weaker signal peak. As in
the former two examples, CLEAN successfully

recovers the spectral information.

5. Applying CLEAN to seismological data

The investigation of temporal changes of the Earth's
stress ®eld and the related quantitative understanding
of tectonic processes remains one of the most interest-

Fig. 4. Estimated phase di�erences between GERESS stations D3 and D9. (A) shows subwindow with only small data gaps, which

is taken from 17 days time series in (B).
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ing topics in geophysics. A main drawback of such in-

vestigations are the di�culties that occur with the

measurement of stress. In situ measurements require

boreholes and are limited to the uppermost kilometers

of the Earth's crust, whereas an indirect measurement

often involves parameters that are only weakly related

to stress. Frequently used parameters for stress
measurements are seismic velocities, although the func-

tionality of a stress-velocity relation cannot be easily

formulated for a complex, heterogeneous medium (e.g.

Eisler, 1967; 1969; Aki et al., 1970; Reasenberg and

Aki, 1974).

In this study we search for temporal changes of seis-

mic velocities in elastic-wave observations from extre-
mely narrow-band machine sources (see Bokelmann

and Baisch, 1999). It has been shown that these waves

may propagate observably over hundreds of kilometers

in Central Europe. Our main interest is to ®nd out

whether our monitoring technique of velocity changes

is sensitive enough to render stress induced e�ects.

Therefore we compare observed velocity changes with

theoretical changes of the Earth's stress ®eld due to

solid earth tides (cf. DeFazio et al., 1973; Bungum,

1977). Our technique comprises monitoring of the rela-
tive phase of the seismic signal, recorded by two or

more instruments at the Earth's surface, which can be

easily related to relative changes in the signal's vel-

ocity.

Least-squares estimation of phases (see Appendix A)

is easily in¯uenced by the presence of seismic events,
which forces us to cut out event-contaminated time

windows. Threshold-testing results in a 17-day time

series with about 67% of the data missing (Fig. 4B).

The parameters for the threshold testing are chosen

conservatively for the sake of demonstrating the capa-

bility of the CLEAN technique with a challenging data

set.

We have chosen a station pair of the GERESS array

Fig. 5. Spectrum of phase di�erences calculated for 4-day time window (dash±dotted line). Solid line shows spectrum of predicted

solid earth tides with K1 and M2. For comparison, both spectra are normalized to maximum. Shading indicates frequency resol-

ution for phase di�erences.
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with a relative distance of about 3 km (for details

about GERESS see Harjes, 1990). Although the phase

di�erences are noisy, one may see indications of peri-

odic changes at low frequencies. However, reliable in-

formation about the periodicities requires inspection of

the frequency domain. As a start, we picked out the

longest, only weakly contaminated data subset of 4

days (Fig. 4A), linearly interpolated the missing data

and transformed into frequency domain. Beside a

major peak at 0.25/day, the spectrum (Fig. 5) shows

two broad peaks in the vicinity of 1/day and 2/day re-

spectively, for which the dominant spectral com-

Table 1

Strongest solid earth tides for Germany (latitude 48.38) after Wenzel (1995)

Name Frequency (1/day) Amplitude (prediction for rigid earth) (m2/s2)

O1 0.9295 0.983

P1 0.9973 0.457

K1 1.0027 1.382

M2 1.9324 1.061

S2 2.0 0.494

Fig. 6. Spectrum of sampling function for 17-day time window (upper subplot), dirty spectrum of phase di�erences (middle) and

cleaned spectrum of phase di�erences (lower subplot) after 300 CLEANS with gain factor of 0.1. Note that M2 (short line) does

not match 2/day peak within frequency resolution (shaded area).
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ponents of the earth tides K1 and M2 lie well within
the frequency resolution of dn=0.25/day (see Table 1).

Unfortunately there are several other periodic
e�ects, which might in¯uence our data in a similar
way. Meteorological e�ects, such as humidity and tem-

perature changes, have spectral energy at exactly 1/day
(diurnal) and 2/day (semidiurnal). Also the source

function of the seismic signal itself shows periodic
changes in these bands, due to the load of the electric

power network. In principle, the latter e�ects should
not enter phase di�erences gathered at a ®xed fre-
quency. However, remnant frequency variations might

produce some leftover e�ects of the source phase. To
understand the cause of the observed periodic changes,

we need to extend the time window for a higher fre-
quency resolution until the characteristic frequency of

M2 (1.9324/day) can be separated from that of other
e�ects with 2/day periodicities.

Extending the time window to 17 days would allow
that frequency resolution, but it comes along with a
considerable increase of missing data (Fig. 4B) and

thus a complicated spectrum of the sampling function
(Fig. 6A).

Computation of the dirty spectrum yields clusters of
peaks around 1/day and 2/day with similar magnitude

(Fig. 6B). Using CLEAN the peaks at 1/day and 2/day
become much more pronounced and remain as the
strongest peaks in the spectrum. With that superior

frequency resolution the observed spectrum clearly
does not match M2. Instead both peaks show diurnal

and semidiurnal frequencies. The observed periodic
e�ects are thus apparently not due to the solid earth

Fig. 7. Comparison of Lomb±Scargle normalized periodogram and CLEAN. (A) shows dirty spectrum of synthetic time series,

c=cos(2p0.8t ) sampled at 110 points with periodic data gaps. Lomb±Scargle normalized periodogram (B) closely ®ts dirty spec-

trum including two sidelobes at 0.2 and 1.8 Hz. In contrast, CLEAN correctly removes sidelobes and ®ts only true signal at 0.8 Hz

(C). Broken lines labeled at right-hand side of (B) denote false alarm probability, e.g. 0.001 stands for false alarm probability of

0.1%.
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tides; instead one of the other factors mentioned above
is the cause.

6. Discussion

For the given data, the decision whether the periodic
changes of phase di�erences are due to elastic velocity

changes caused by tidal stresses or not required the ap-
plication of the CLEAN technique. However, there
exist other methods to evaluate the spectral content of

nonequidistantly sampled time series. One of them is
the Lomb±Scargle normalized periodogram (e.g.Press
and Rybicki, 1989; Schulz and Stattegger, 1997), which

acts on a per-point instead of a per-time interval basis.
In addition, the normalization of the Lomb±Scargle
periodogram enables a simple calculation of the signi®-

cance level of any peak. Especially for arbitrary
sampled time series which contain a single harmonic
component, the Lomb±Scargle normalized periodo-
gram is a useful algorithm.

In other situations, if the spectral window has dis-
tinct sidelobes, the periodogram may lead to misinter-
pretation, since it ®ts the dirty spectrum to a certain

extent. This can be seen most clearly in examples of
regular sampled data with periodic data gaps. Fig. 7A
shows the dirty spectrum of a single harmonic sampled

with the same function as in Fig. 4C. Any peak beside
that at 0.8 Hz is due to artefacts from the spectral win-
dow. The Lomb±Scargle normalized periodogram (Fig.
7B) evaluates two of those artefacts as highly signi®-

cant signal peaks. In contrast, CLEAN properly
removes the sidelobes (Fig. 7C) and shows only the
signal peak at 0.8 Hz.

For the given data example with it's complex spec-
tral window function (Fig. 6A) the Lomb±Scargle nor-
malized periodogram is not applicable; only CLEAN

can be expected to treat properly the missing data.
Thus, we emphasize that CLEAN is a powerful tool
for the spectral estimation of any ®nite regularly

sampled time series with missing data.

7. Conclusions

We introduced the CLEAN algorithm for spectral
analysis of nonevenly spaced time series to the geophy-

sical context, and demonstrated the capability of the
algorithm with synthetic examples. In principle,
CLEAN can be applied to data of all di�erent kinds

of sampling, evenly and unevenly spaced. For evenly
spaced data, CLEAN simply removes the artefacts that
stem from the ®niteness of the time window. But the

focus of this paper lies on nonequidistantly sampled
data. We distinguish two di�erent forms of sampling,
regular sampling with missing data and entirely arbi-

trary sampling. CLEAN can be applied to both situ-
ations, but the latter case may require a considerable

increase of computational time. In the example of reg-
ularly sampled data with data misses, CLEAN shows a
remarkably stable performance. In all examples we

tested, CLEAN successfully recovered the spectral in-
formation from the dirty spectra. For the situation of
a well-known spectral window CLEAN proved to be

superior to the Lomb±Scargle normalized periodo-
gram, which closely ®tted the dirty spectrum.
The data example from seismology required the

treatment with CLEAN to exclude the solid earth tides
as a cause for the observed periodic changes in elastic
wave velocities.
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Appendix A. Least-squares estimation of amplitudes and

phase di�erences

A monochromatic signal with frequency n received
at coordinates ~x can be described by a seismogram
c(t ) of the form

c�t� � A cos�2pntÿ ~k~x� j� � Z�t�

� A cos�2pnt� F� � Z�t�, �A:1�

where ~k denotes the wave vector and j the phase of

the signal. Z(t ) is a measure of the `noise' which
includes any process di�erent from the signal. In the
following we will take F=ÿ ~k~x+j as the signal

phase.
To solve Eq. (A.1) for phase F and amplitude A we

rewrite Eq. (A.1) as

c�t� � A cos�F�cos�2pnt� ÿ Asin�F�sin�2pnt�

� Z�t� �A:2�

and obtain a linear equation system
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266664
c�t�

c�t� Dt�
c�t� 2Dt�
..
.

377775 � G ~m� ~Z, �A:3�

where

G �

266664
cos�2pn�t� Dt�� sin�2pn�t� Dt��

cos�2pn�t� 2Dt�� sin�2pn�t� 2Dt��
cos�2pn�t� 3Dt�� sin�2pn�t� 3Dt��
..
. ..

.

377775
and

~m �
�
A cos�F�
ÿAsin�F�

�
from which we obtain A and F.
Note, that Eq. (A.3) assumes the exact knowledge of

the signal frequency. In our context, the signal fre-

quency changes slightly with time leading to a phase
drift. Therefore we use phase di�erences between indi-
vidual receiver pairs, which are independent of the

source phase j.
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