
Geophysical Journal International
Geophys. J. Int. (2016) 204, 968–984 doi: 10.1093/gji/ggv490

GJI Seismology

Quantifying the similarity of seismic polarizations

Joshua P. Jones,1 David W. Eaton2 and Enrico Caffagni3
1220 SE 151st Ave, Portland, OR 97233, USA. E-mail: highly.creative.pseudonym@gmail.com
2Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
3Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria

Accepted 2015 November 9. Received 2015 October 22; in original form 2014 December 2

S U M M A R Y
Assessing the similarities of seismic attributes can help identify tremor, low signal-to-noise
(S/N) signals and converted or reflected phases, in addition to diagnosing site noise and
sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying
the orientation and directional characteristics of seismic phases via computed attributes, but
similarity is ordinarily discussed using qualitative comparisons with reference values or known
seismic sources. Here we introduce a technique for quantitative polarization similarity that
uses weighted histograms computed in short, overlapping time windows, drawing on methods
adapted from the image processing and computer vision literature. Our method accounts for
ambiguity in azimuth and incidence angle and variations in S/N ratio. Measuring polarization
similarity allows easy identification of site noise and sensor misalignment and can help identify
coherent noise and emergent or low S/N phase arrivals. Dissimilar azimuths during phase
arrivals indicate misaligned horizontal components, dissimilar incidence angles during phase
arrivals indicate misaligned vertical components and dissimilar linear polarization may indicate
a secondary noise source. Using records of the Mw = 8.3 Sea of Okhotsk earthquake, from
Canadian National Seismic Network broad-band sensors in British Columbia and Yukon
Territory, Canada, and a vertical borehole array at Hoadley gas field, central Alberta, Canada,
we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends
polarization similarity to the time–frequency domain in a straightforward way. Time–frequency
polarization similarities of borehole data suggest that a coherent noise source may have
persisted above 8 Hz several months after peak resource extraction from a ‘flowback’ type
hydraulic fracture.

Key words: Time-series analysis; Wavelet transform; Persistence, memory, correlations,
clustering; Body waves.

1 I N T RO D U C T I O N

Polarization analysis has been used to characterize seismic data for
decades. Some of the earliest quantitative studies of particle mo-
tion were performed by Montalbetti & Kanasewich (1970), Vidale
(1986) and René et al. (1986). Decades later, however, no technique
exists that effectively quantifies the notion of ‘similar polarizations’.
Existing techniques for polarization analysis often compare polar-
izations with predicted values from located earthquakes to establish
empirical misfit distributions (e.g. Jurkevics 1988; De Meersman
et al. 2006). In monitoring experiments where multiple seismic
sources are simultaneously active, researchers compare polariza-
tion with expected values from different plausible physical sources
(e.g. Acernese et al. 2004; Jones et al. 2012b; Das & Zoback 2013b;
Tary et al. 2014), yet these comparisons are qualitative and some-
times only graphical.

In recent years, blind source separation (BSS) techniques have
been used to extract similarly polarized signals from narrow aper-
ture seismic arrays; examples in the literature use Principal Compo-
nents Analysis (Jones et al. 2012a,b), Singular Value Decomposition
(De Meersman et al. 2006), and Independent Component Analysis
(Acernese et al. 2004). Yet BSS can only assess similarity using
proxy measures to compare each sensor with a common (extracted)
spatio-temporal pattern, such as eigenvector loadings at each sensor
(Jones et al. 2012a), or deviations from a calculated reference value
(De Meersman et al. 2006). The latter is also a traditional means
of assessing accuracy when studying computed values of polariza-
tion attributes (e.g. Vidale 1986; Park et al. 1987; Jurkevics 1988;
Pinnegar 2006).

In this work, we introduce a quantitative measure for polariza-
tion similarity based on histogram distance metrics adapted from
the image processing literature. The proposed method accounts for
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Table 1. Polarization attributes used in this work.

Name Symbol and formula Range Reference

Azimuth θ = tan−1
(

Re(v13)
Re(v12)

)
(−90◦, 90◦] Vidale (1986)

Ellipticity η =
√

(1−Re(v2
1))

Re(v1) [0, 1] Vidale (1986)

Incidence φ = tan−1

( √
Re(v2

12)+Re(v2
13)

Re(v11)

)
(−90◦, 90◦] Vidale (1986)a

Planarity ν = 1 − 2λ3
λ1+λ2

[0, 1] Jurkevics (1988)

Rectilinearity ρ = 1 − λ2+λ3
λ1

[0, 1] Jurkevics (1988)

aVidale (1986) uses dip, δ = tan−1
(
(Re(v2

12) + Re(v2
13))0.5/Re(v11)

)
, which has the opposite sense of φ.

some degree of scatter by computing the cost of transforming one
histogram into another, and is easily modified for periodic (angu-
lar) polarization attributes. Weighting histograms by seismic energy
can suppress noise and allow characterization of emergent arrivals.
Renormalizing histograms prior to the similarity calculation elimi-
nates the need to determine scalar site amplifications.

2 T H E O RY: S E I S M I C P O L A R I Z AT I O N

We start with a brief review of quantitative polarization analysis.
For a single-channel digital seismogram x, the analytic extension of
the signal is

x̃ = x + ih(x), (1)

where h denotes the Hilbert transform (Kanasewich 1981). For
three-component data from multiple sensors, let k denote sensor
index and assume a right-handed Z, N, E coordinate system (with
positive Z indicating downward motion). Let Xk = [xzk xnk xek] de-
note a three-component seismogram. Polarization can be estimated
by diagonalizing the complex covariance matrix

C =

⎡
⎢⎣

x̃z · x̃∗
z x̃z · x̃∗

n x̃z · x̃∗
e

x̃n · x̃∗
z x̃n · x̃∗

n x̃n · x̃∗
e

x̃e · x̃∗
z x̃e · x̃∗

n x̃e · x̃∗
e

⎤
⎥⎦ (2)

where ∗ denotes the complex conjugate (Kanasewich 1981; Vidale
1986; D’Auria et al. 2010); the complex time–frequency transform
in Kulesh et al. (2007) yields an equivalent formulation. The system⎡
⎢⎣

x̃z

x̃n

x̃e

⎤
⎥⎦C − 	I = 0 (3)

is solved to obtain real eigenvalues λi (i = 1, 2, 3) and complex
eigenvectors vi . Each λi gives the relative strength of the polar-
ization vector and the corresponding vi give their orientation with
respect to the data coordinate system (Jurkevics 1988). In order to
investigate elliptical polarizations, Vidale (1986) rotated the prin-
cipal eigenvector v1 of C into the complex phase angle ψ that
maximizes the length of Re(v1).

A number of attributes can be computed from λ, ψ and v1. As
a shorthand convention we will use the generic variable α to refer
to a nonspecific polarization attribute. The attributes used in this
work are given in Table 1, though any bounded attribute computed
by equivalent techniques (e.g. René et al. 1986; Kulesh et al. 2007)
could be analysed identically.

The measures used in this work have straightforward physical in-
terpretations. η measures elliptical polarization, with 0 indicating a

linearly polarized wavefield and 1 indicating spherical polarization.
θ and φ are horizontal and vertical angular measures, respectively.
Rectilinearity (ρ) and planarity (ν) measure the linear and planar
polarization of the wavefield, respectively, where a high ρ represents
a linearly polarized wavefield.

2.1 Instantaneous versus averaged polarization

As described in D’Auria et al. (2010) and Vidale (1986), evalu-
ating C at a single time t yields one non-null eigenvalue λ1 with
corresponding (normalized) principal eigenvector

v1t =
[

x̃zt

x̃et

x̃nt

x̃et
1

]
. (4)

Of the attributes α listed in Table 1, ellipticity (η), azimuth (θ ) and
incidence angle (φ) are sometimes called ‘instantaneous’ because
they can be computed directly from eq. (4) after finding ψ (Vidale
1986). ν and ρ are termed ‘averaged’ quantities in that C in eq. (2)
must be averaged over a window at least 3 points long to yield three
non-null eigenvalues λi. In practice, averaging is often used even
for instantaneous measures to stabilize the calculation.

3 M E T H O D

A measure of similarity for seismic attributes, and particularly for
seismic polarization, would be a useful tool for addressing a number
of problems: potential examples include sensor alignment in arrays,
empirical phase separation, and determining the repetition intervals
(and hence constraining source durations) for quasi-continuous sig-
nals formed by superposed, discrete sources. This task is difficult for
seismic polarization for two reasons: not only are angular attributes
periodic, but in a heterogeneous environment, small changes in path
geometry can yield significant changes in attribute values. Differ-
ent seismic phases can show systematic changes in every attribute
across an array while individual measures vary considerably (e.g.
Jurkevics 1988, figs 6–8). This may be due to sensor misalignment
but is more commonly a consequence of seismic path effects.

3.1 Histogram distances

Time series of polarization attributes are extremely difficult to com-
pare due to both the 180◦ ambiguity in θ and φ and the effects of
scattering on all measures. However, histogram distances are com-
monly used to compare feature populations in other fields, notably
image processing and computer vision; a few prominent methods
from the recent literature are Pele & Werman (2010), Ling & Okada
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(2007), Rubner et al. (2000) and Hafner et al. (1995). In this work,
we measure polarization similarity via. the proxy measure of his-
togram distances computed from time windows of three-component
seismograms.

Let H denote a histogram; let Hikα denote the ith bin of histogram
H at station k for attribute α. For instantaneous attributes like those
of Vidale (1986), a natural approach is to form weighted histograms,
where each bin i is filled with the summed energy of all data whose
α lie within the bin’s edges. Hence, each bin is given by

H (V )
αki =

∑
t :αk (t)∈i

x2
zk(t) + x2

nk(t) + x2
ek(t). (5)

When an attribute α is instead averaged in a short time window,
as with the planarity and rectilinearity of Jurkevics (1988), the
equivalent weighting scheme is to sum Tr(C) from eq. (2),

H (J )
αki =

∑
t :αk (t)∈i

Tr(Ckt ). (6)

We will use these weighting schemes to construct histograms of
polarization attributes in the rest of this work.

3.2 Choice of distance metric

It remains to choose an appropriate distance metric for polarization
histograms. In problems where features (attributes) being studied
are neither periodic nor circularly shifted within their domain, sim-
ilarity can be described with simple measures that compare each
bin in H1 with the same bin in H2; the simplified notation arises be-
cause we are considering a single hypothetical attribute. The L1 and
L2 norms are both examples of such ‘bin-to-bin’ distance metrics.
Another well-known example is the ‘χ 2 distance’ of Snedecor &
Cochran (1967),

D(χ2) = 1

2

Ni∑
i=1

(H1i − H2i )2

H1i + H2i + ε
, (7)

where ε is a small corrective term that stabilizes the calculation for
sparse histograms. Although based on the Pearson’s χ 2 test statistic,
the denominator of eq. (7) differs to satisfy the symmetry property
D(H1, H2) = D(H2, H1) (Munkres 1975).

Although well-suited to problems in other fields, distance met-
rics like D(χ2) are poorly suited to characterize seismic attributes
because each attribute in Table 1 is subject to slight absolute shifts
from noise and local heterogeneities. It follows from basic consider-
ations that variations in angular attributes increase as station spacing
increases. Thus, a robust way to compensate for this is to adopt a
distance metric that takes the resultant bin shifts into account.

Some histogram distance metrics calculate the minimum cost of
transforming one distribution into another. The canonical exam-
ple of this class of metric is the Earth mover’s distance (EMD) or
Wasserstein metric (Rubner et al. 2000), adapted from the funda-
mental transportation theory work of Monge (1781). However, in
a recent paper by Pele & Werman (2010), a new metric was in-
troduced that outperforms EMD and its variants in both speed and
accuracy: the Quadratic Chi (QC) distance,

D(QC) =⎛
⎝∑

i j

(
H1i − H2i

(
∑

c(H1c + H2c)Aci )m

) (
H1 j − H2 j

(
∑

c(H1c + H2c)Acj )m

)
Ai j

⎞
⎠

1
2

,

(8)

Figure 1. Distances between two fictitious populations. Reference and test
populations (dark and light grey, respectively) are divided into Ni = 60
bin histograms. Distance values appear at the upper right of each plot.
The superscript (χ2) indicates D is calculated using the distance metric of
Snedecor & Cochran (1967), while (QC) indicates that of Pele & Werman
(2010). In the lower three plots, the bin distance matrix A uses τ = 12; its
form is indicated by a dashed line centred on i = 30, i.e. row A30j of A.

where m is a normalization factor (0 ≤ m < 1) and A is a bin
separation matrix (described below). In this work we strictly set
m = 0.5; our choice of A will be discussed in the next section.

An appealing property of eq. (8) is that normalization is
straightforward: with m = 0.5 and histograms renormalized s.t.∑

iH1i = ∑
iH2i = 0.5, max (D(QC)) ∼ 1. As histograms become

more uniformly distributed, max (D(QC)) decreases. However, as we
demonstrate below, when polarization attributes are computed in a
time window around an impulsive phase arrival, their histograms
are generally sparse and well-peaked.

3.2.1 The bin separation matrix

The bin separation matrix A in eq. (8) increases the distance
between two histograms using a cost functional that penalizes
moving material between bins. The choice of cost functional is
somewhat arbitrary; Pele & Werman (2010) recommend measures
adapted to the data being studied. In this section, we introduce
and motivate a bin separation matrix suitable for studying seismic
polarization.
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Figure 2. Sample synthetic data and corresponding polarization histograms for azimuth (θ , top right), ellipticity (η, middle right), and incidence (φ, bottom
right). Grey lines and bars are generated from a noise-free reference signal with polarization θ = 0◦, η = 0, φ = 90◦. Black lines and bars correspond to a test
signal with polarization θ = 90◦, η = 0, φ = 90◦. Additive Gaussian noise is generated independently for each channel at S/N = 10 dB. Population distances
computed via eq. (8) appear at the upper right of each histogram.

The simplest form of A is the identity matrix. For renormalized
histograms with Ni bins, letting A = I reduces D(QC) to

√
2D(χ2).

Another simple form of A scales Aij linearly with bin separation
|i − j|, i.e.

Ai j = max

(
0, 1 − τ |i − j |

Ni

)
, (9)

where Ni is number of bins in the histogram. The threshold τ is
introduced so that Aij = 0 for |i − j| ≥ τ .

For histograms of seismic attributes computed around a phase
arrival, one might reasonably expect a roughly Gaussian distribu-
tion, rather than a linear fall-off. Thus, a more suitable expression
here is a Gaussian, where we choose τ based on bin spacing and its
relation to the spread in polarization attributes. This can be written
explicitly, with μ = i and σ = τ/3, as

Ai j =

⎧⎪⎪⎨
⎪⎪⎩

√
3

2πτ
exp − 9( j−i)2

2τ
max(1, 
i − τ + 1�)

≤ i ≤ min(Ni , �i + τ − 1
)

0 otherwise.

(10)

This expression is easily periodized for θ , φ by relaxing the first
case restriction to min

(|i − j |, Ni − |i − j |) ≤ 3σ .

3.2.2 A simple example

Let us illustrate how these distance metrics behave with a ‘toy’
example, consisting of two simple histograms. The plots in Fig. 1
show two fictitious populations, P1 (dark grey) and P2 (light grey)
divided into Ni = 60 bins. In all plots, the second population is
shifted relative to the first.

In the top plot of Fig. 1, P2 is shifted from P1 by a single bin.
If these histograms were computed from polarization attributes,
the two populations would have an absolute shift of 3.0◦ (in θ or
φ) or 1.7e-2 (in η, ρ, or ν). The χ 2 distance between populations
(D = 0.54) suggests little similarity. Because the two populations
have only two non-empty bins, a shift of two bins or more increases
the χ 2 distance to 1.0 (second plot of Fig. 1). Thus, in this example,
χ 2 distance is maximized for a polarization shift of 6.0◦ in θ or φ

(or 3.0e-2 in η, ρ, or ν). A stringent distance metric that implicitly
depends on number of non-empty bins is of limited use.

We now recalculate distance with eq. (8). In the lower plots
of Fig. 1, we compute D(QC) from eq. (8), setting τ = 12. A is
computed using eqs (9) and (10) in the third and fourth plots,
respectively. Using eq. (8) and the periodized version of eq. (10),
two populations of polarizations become dissimilar (D > 0.50)
when min

(|i − j |, Ni − |i − j |) ≥ 5. (bottom plot). This bin shift
corresponds to two angular polarizations shifted 15◦ with respect to
one another.
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In the rest of this work, we will use the Gaussian expression in
eq. (10) to compute the bin separation matrix and eqs (9) and (8)
to compute histogram distances. We will omit the superscript (QC)

from Dα hereafter.

3.3 Attribute similarity

A static measure of polarization similarity can be defined directly
from eq. (8) as

S(s)
α = 1 − 2Dα, (11)

where the factor of 2 gives Sα the approximate range and sense of
a cross-correlation coefficient. However, it may be more useful to
define an adaptive measure that takes the expected range of Dα into
account,

S(a)
α = min

(
1, 1 − 2 min

(
1,

Dα − DL

DU − DL

))
, (12)

where DU and DL are empirical bounds on Dα that depend on S/N
ratio. In the next section, we will establish a range for DU and DL

using Monte-Carlo simulations of a synthetic signal with additive
Gaussian noise.

3.4 Testing

Before we introduce a similarity measure, we must investigate how
histogram distance behaves in a controlled way. At issue is the
expected range of Dα in eq. (8) and whether averaging polarization
attributes is necessary.

In this section, we explore these topics using Monte-Carlo simula-
tions of three-component data. We generate our data as a noise-free
signal with additive Gaussian noise, i.e.

X = S + N, (13)

where S is a uniformly polarized seismic phase. The signal is
an upsampled, zero-padded length 20 Daubechies wavelet filter
(Daubechies 1992), rotated into the desired θ , φ. To vary η in a con-
trolled way, we replace S̃ with Re(S̃) cos ψ + Im(S̃) sin ψ , where the
tilde denotes the use of eq. (1) and ψ = (π/2)η; this last relation-
ship follows from the definition in Vidale (1986). For these tests,
the subscript 1 will denote reference data with a fixed polarization
and 2 will denote test data rotated with respect to the reference data.

3.4.1 Histogram distance range

While our choice of distance metric is bounded by [0, 1], renor-
malization means that two histograms of a uniformly distributed
attribute α are identical (Dα = 0). Thus, it is necessary to investi-
gate how signal-to-noise ratio (S/N) affects the range of Dα for each
parameter in Table 1.

For these tests, S/N is measured in dB, i.e. S/N =
20 log10 ‖S‖/‖N‖. We perform Monte-Carlo simulations by repeat-
edly generating pairs of synthetic data sets, computing histograms
for polarization attributes, and measuring the distance between the
reference and test populations. The random variable for each itera-
tion is the additive Gaussian noise. In the first set of tests, S1, S2 are
identically polarized (|�α| = 0 or 0◦, as appropriate). Measuring
Dα for two identically polarized signals with different additive noise
establishes an empirical lower bound of eq. (8) as a function of S/N.
In the second set of tests, the polarizations of S1, S2 are maximally
dissimilar (|�α| = 0 or 90◦), enabling us to establish an empiri-
cal upper bound for eq. (8). In both sets of tests, S/N varies from

Figure 3. Minimum and maximum distances between polarization attribute
histograms for synthetic data, as a function of S/N ratio in dB. Each α,
S/N point averages 1000 simulations. Broken lines correspond to average
distances of identically polarized signals (�α = 0). Solid lines represent
average distances of maximally dissimilar polarizations (|�α| = 1 or 90◦,
as appropriate). (a) Distances for θ , η and φ when attributes are computed
instantaneously using eq. (4). (b) Distances for θ , η and φ computed with
11-point averages. (c) Distances for ν, ρ using 11-point averages.

−10 to +40 dB in 1 dB increments, controlled using the envelopes
(E(x) = |x̃|) of S and N. 1000 trials are conducted for each α at
each S/N ratio. Histogram distances are computed using eqs (8) and
(10) with Ni = 100 and τ = Ni/6.

Fig. 2 shows a sample trial at S/N = 10 dB. Reference data X1

are grey, test data X2 are black. S1 has azimuth θ = 0◦, S2 has
θ = 90◦. Both synthetic phase arrivals have incidence φ = 90◦, el-
lipticity η = 0. As expected, only the distance between θ histograms
(populations) is large.

Fig. 3 plots the results of these tests. In Fig. 3(a), distances are
determined from histograms of instantaneous attributes; that is, θ kt,
ηkt, & φkt are each computed at a single time t to form each histogram
Hαk. In Fig. 3(b), these attributes are instead computed using an 11-
point moving average. Fig. 3(c) shows the corresponding range of
Dν , Dρ using 11-point moving averages. Comparing Figs 3(a) and
(b), for S/N ≤ ∼ 12 dB, averaging increases the minimum and
maximum of Dα , but the net effect is increased separation of the
upper and lower bounds. At higher S/N ratios, averaging reduces
the expected minimum distance between identical populations.

3.4.2 Static versus adaptive similarity

To determine which similarity measure best characterizes seismic
polarization, we generate empirical fall-off curves for eqs (11) and
(12) using additional Monte-Carlo simulations. Testing details are
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Table 2. Testing parameters for Monte-Carlo simulations of polarization similarity using synthetic three-
component data. Second column gives approximate peak of each attribute α with the reference polarization.
Third column gives histogram bin width. Fourth and fifth columns give testing range and increment, respectively.
Sixth column gives fixed attributes α for each set of tests.

Attribute Ref. Bin Test range Incr. Fixed attributes

Azimuth (θ ) θ = 0◦ 1.8◦ 0–30◦ 1◦ φ = 90◦, η = 0
Ellipticity (η) η = 0 0.01 0.00–0.30 0.01 θ = 45◦, φ = 45◦
Incidence (φ) φ = 90◦ 1.8◦ 0–30◦ 0.5◦ θ = 0◦, η = 0

Figure 4. Similarity fall-off curves, as a function of separation between polarization peaks for two distributions computed from synthetic data. Contours
correspond to different S/N ratios in dB. (a) Curves from instantaneous attributes evaluated with the static similarity measure in eq. (11). (b) Curves from
attributes computed with 11-point averages using static similarity. (c) Curves from instantaneous attributes using the adaptive similarity measure in eq. (12).
(d) Curves from attributes computed with 11-point averages using adaptive similarity.
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Table 3. Data preprocessing guide for figures. Motivation for preprocessing differences is given in the text. Third column lists new
instrument critical frequency fc, fourth column gives new sampling frequency fs, and fifth column gives the corner frequencies of a
2-pole zero-phase Butterworth bandpass filter; all are in Hz.

Earthquake Array fc fs Passband Figs

MN = 3.1, SE of Banff, AB Hoadley, AB 3.0 100 1.0–20.0 5, 6, 7, 9
Mc = 8.3, Sea of Okhotsk Hoadley, AB 0.2 50 0.04–4.5 10, 11
Mc = 8.3, Sea of Okhotsk CNSN, BC & YT 1

120 50 0.04–4.5 12
MN = 3.1, SE of Banff, AB Hoadley, AB 3.0 32 Unfiltered 13
Mc = 8.3, Sea of Okhotsk Hoadley, AB 0.2 32 Unfiltered 14

Figure 5. A regional earthquake near Banff, AB (Canada), recorded by a 12-station vertical borehole monitoring array near Hoadley, AB (red triangle). Yellow
star indicates epicentre. Upper inset shows spectrogram for sensor 1 vertical component data with scaling in dB. Lower inset shows normalized, time-aligned
vertical component velocity seismograms for all operational geophones, sorted by sensor. Pn, Pg and S phase arrivals are indicated with dashed lines and labels.
Trace data are labelled with corresponding station numbers. Times are relative to earthquake origin.

identical to the previous section, except for the following: here,
the reference data X1 use a fixed polarization, while test data X2

are rotated over a range of values for each parameter (Table 2).
Each set of trials varies one attribute α in the test data while the
other two are held fixed. 1000 trials are conducted for each α at
each incremental rotation as S/N varies from −4 to 12 dB in 4 dB
increments.

Fig. 4 plots the resultant curves. These can be easily interpreted;
for example, at S/N = 12 dB, two seismic phases rotated θ = 30◦

are dissimilar according to both similarity measures. However, com-
paring Figs 4(a) and (c) with Figs 4(b) and (d), the combination of
averaging and adaptive similarity produces extremely uniform fall-
off curves. In fact, the values in Fig. 4(d) suggest that using eq. (12)
with averaged values produces such uniform results that similar
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Figure 6. Azimuth histograms for the earthquake of Fig. 5, from seismo-
grams at the two shallowest sensors of the borehole array. Top plot shows raw
Z component data with histogram windows highlighted. Second and third
plots show histograms of noise; fourth and fifth plots, Pg; last two plots, S.
Superscripts in plot labels indicate phase: (p) for Pg, (s) for S, (n) for noise.
Subscripts indicate sensor number. Times are relative to event origin.

seismic phases could be identifiable from polarization alone—even
for emergent, quasi-continuous signals in noisy environments.

In the rest of this work, we measure similarity using eq. (12)
and omit the superscript (a) from S(a)

α . When working with real
data, DU, DL can be obtained using the procedure described in
the previous section, with S/N determined from ratios of short-
and long-term averages (STA-LTA) of the signal envelope. The
advantages of these over absolute values (or squares) of seismogram
amplitude are discussed in e.g. Jones & van der Baan (2015) and
Earle & Shearer (1994).

4 A P P L I C AT I O N

In this section, we demonstrate application of the method to two
data sets: broad-band seismograms recorded by Canadian National
Seismic Network (CNSN) permanent stations, and borehole records
from a 12-station array at Hoadley gas field, central Alberta, Canada.
The Hoadley array was installed as part of a temporary microseis-
mic monitoring experiment that ran from September 2012 to July
2013; instrumentation details can be found in Appendix A, and a
full description of the experiment appears in Eaton et al. (2014).
Data preprocessing is described in Appendix B and preprocessing
parameters for all data are given in Table 3.

Array records of distant earthquakes are a natural test of polariza-
tion similarity because epicentral distance is much greater than the
distance between any two stations. We expect that a robust similar-

Figure 7. Grey-level image of polarization similarity for the azimuth his-
tograms of Fig. 6. Distance metric and computational details are described
in the text. Label superscript and subscripts are as for Fig. 6.

ity measure will produce quantitative results consistent with seismic
wave theory, e.g.

(i) Nearly colocated sensors should have similarly polarized
wavefields during phase onsets.

(ii) Azimuths for Pg and Sg should be dissimilar (low Sθ ) at the
same sensor.

(iii) Polarizations of noise, and phase onsets compared with
noise, should be neither consistently similar nor consistently dis-
similar.

We now test these predictions on two examples of array records. In
these examples, all histograms have Ni = 100 bins.

Fig. 5 shows a typical example of regional seismicity in west-
ern Alberta, Canada: an MN = 3.2 event. The seismograms were
recorded by a 12-station borehole array at Hoadley gas field, cen-
tral Alberta, Canada. Experiment details and data preprocessing are
given in Appendix A and Table 3.

We now analyse the polarization similarity of this record. As
shorthand we will use Sαk to denote the average cross-sensor simi-
larity of attribute α between sensor k and all sensors k1 �= k.

We begin with the example of azimuth. Fig. 6 shows azimuthal
histograms for the two shallowest sensors in the array. The time
windows chosen for analysis include the Pg (t = 35.6–36.6 s) and
Sg (t = 63.9–64.9 s) phase onsets, along with a window of pre-
event noise for comparison purposes. Phase onsets are determined
by analyst inspection using a location and velocity model provided
by Earthquakes Canada and the Alberta Geological Survey, respec-
tively (Caffagni et al. 2015).

Fig. 7 shows a greyscale intensity map of azimuthal similarity for
the test data. θ1, θ 2 are similar for each phase arrival and Pg and Sg

are dissimilar. Noise is not coherent between sensors, despite peaks
in θ that could indicate polarized noise. We conclude that eq. (12)
satisfies the above predictions.

Our picture of the polarization changes little when we use all
available station pairs. We will use the variable S̄α to denote the
average of all K(K − 1)/2 similarities (across a K-station array)
for attribute α. Fig. 9 shows a colour intensity map of Skα for all
available geophones in the Hoadley array (designated H01, H02,
etc.). Similarity computations use 1 s (100 sample) histogram win-
dows spaced every 0.2 s. Cross-station similarity increases for all
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Figure 8. Workflow diagram for determining polarization similarity. x̃ is
computed from eq. (1). S/N uses the maximum STA/LTA of the signal
envelope in each window (Kanasewich 1981). C is computed from eq. (2),
and polarization attributes α use the formulae in Table 1. Histograms use
the weighting scheme in eq. (6). Dα uses eq. (8) with Ni = 100, m = 0.5 and
A computed from eq. (10).

attributes at the Pn onset and remains high until the coda onset. An-
gular polarization is only slightly similar during the Pg phase onset,
presumably due to both the emergent arrival and strong scattering
in the hydraulic fracture network below the array. ν and ρ are very
similar during phase arrivals.

5 D I S C U S S I O N

Fig. 8 describes the full workflow of our method; note that only the
last steps are new. One of the great strengths of this approach is that

histogram distance metrics don’t assume a unimodal distribution.
Thus, even if many signals are present in a single window, and
each signal is well-polarized with comparable energy, our similarity
measure requires no modification to accurately characterize how
polarization changes between stations.

A quantitative measure of polarization similarity has many poten-
tial applications. For example, relief plots of polarization similarity
allow easy graphical identification of misaligned sensors based on
streaks of consistently low or high similarity values, particularly
when similarity is unchanged (or decreases, rather than increases)
during phase onsets. Consistently dissimilar azimuths (Sθk < 0 ev-
erywhere) indicate noisy horizontal components; a decrease in Sθk

during phase arrivals indicates misaligned horizontal components
at sensor k. A decrease in Sk, θ during phase arrivals can indicate
a rotated vertical component, while consistently low Sθk indicates
a noisy vertical channel. Comparing Fig. 9 with the trace data in
Fig. 5 confirms the latter interpretation for sensor H08.

5.1 Effects of station spacing

Noise becomes dissimilarly polarized as station spacing increases,
but attenuation and scattering will reduce attribute similarity of
incident seismic phases. To investigate how these factors affect our
method, we compare records of the 2013 May 24 May Mw = 8.3
Sea of Okhotsk earthquake (Ye et al. 2013) from two arrays: the
Hoadley, AB borehole array, and five permanent CNSN broad-
band stations in British Columbia and Yukon Territory, Canada
(Fig. 10).

Fig. 11 shows a relief image of polarization similarity for (time-
aligned) CNSN broad-band data. Polarization histograms are com-
puted in 2 s windows spaced every 0.2 s. Station spacing ranges
from 0.3◦−1.8◦; the resultant spread in azimuths is ∼3◦, which re-
duces Sθk as expected (top plot). The angular polarization measures
are dissimilar for the noise but ν, ρ are always extremely similar.
Because the oceanic microseism is largely removed by a Butter-
worth band reject filter, another effect may be responsible for this
similarity.

When analysing data from a narrow aperture array, it is normally
assumed that polarization is similar for high S/N phase arrivals from
a distant source; this assumption underlies the use of array stacking
in many seminal polarization papers (e.g. Jurkevics 1988; Bataille
& Chiu 1991; Earle 1999). To test how this assumption is borne out
by eq. (12), Fig. 12 shows a relief image of Sθk for the P arrival of
the Sea of Okhotsk earthquake at the Hoadley, AB borehole array
(red triangle, Fig. 5). Histograms use the same window length and
spacing as Fig. 11. The Hoadley geophones have 15–30 m station
spacing and a total array aperture of ∼230 m (Caffagni et al. 2015).
Thus, the phase onsets should have nearly identical polarizations.
The figure shows that these expectations are consistent with values
obtained from eq. (12). Incidence angle (φ) shows the least similar-
ity; this suggests that either noise affects some vertical component
channels (e.g., H08, H10) or that these sensors deviate slightly
from vertical. Because H8 and H10 also have the least similar
rectilinearity (ρ) during most of the event, the first explanation is
more likely.

It is noteworthy that Figs 11 and 12 suggest that either polarized
noise is present on both arrays, or that planarity and rectilinearity are
not especially diagnostic for identifying teleseismic phase arrivals.
This issue partly arises because our adaptive similarity measure
was created using Monte-Carlo simulations of ν, ρ ∈ [0, 1], but
the conditions required for ν, ρ ∼ 0 are difficult to achieve in real
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Figure 9. Colour intensity map of cross-station polarization similarity (Sαk) for the event and array of Fig. 5. Second subscript in each label indicates
polarization attribute (Table 1). Top plot shows z-component data from the shallowest borehole geophone (z = −1606 m a.s.l.). Times are relative to earthquake
origin.

seismic data. From their definitions in Jurkevics (1988), low val-
ues of rectilinearity and planarity require 2+ out-of-phase wave-
fields with comparable amplitudes; for the data and short averaging
windows in this work, these conditions are only obtainable during
seismic codas (e.g. Fig. 9). Exotic scenarios can achieve these con-
ditions more reliably: for example, at persistently active basaltic
volcanoes, multiple volcanic tremor sources can combine to pro-
duce low ν & ρ values in frequency bands where different tremor
sources have comparable amplitudes (Jones et al. 2012a,b). Yet per-

sistent quasi-continuous tremor with multiple active sources is only
known to exist at a few volcanoes worldwide: examples include Erta
’Ale, Ethiopia (Jones et al. 2012a,b), Etna, Italy (Acernese et al.
2004), and Marum (Ambrym), Vanuatu (Carniel et al. 2003).

Because ν, ρ ∈ [0, 1] can be seen in field data, our empirical
ranges for Sρ , Sν , are appropriate. However, in specific cases where
planarity and rectilinearity are of greater interest and coda waves
are not being studied, it may be more diagnostic to rederive their
similarity measures using Monte-Carlo simulations over a narrower
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Figure 10. Source–receiver geometry and time-aligned vertical component seismograms from the Mw= 8.3 Sea of Okhotsk earthquake, 2013 May 24 (UTC),
recorded by Canadian National Seismic Network (CNSN) permanent broad-band sensors (red triangles).

attribute range; we caution, however, that this will result in Sρ , Sν ≤
−1 during seismic codas. We used the range [0, 1] mainly to remain
consistent with the other attributes studied in this work.

5.2 Time–frequency polarization similarity

Time–frequency polarization analysis is commonly used to isolate
noise and unwanted secondary signals (e.g. Lilly & Park 1995;
Anant & Dowla 1997; Gao et al. 1999; Kulesh et al. 2007; D’Auria
et al. 2010; Jones et al. 2012a). However, caution must be exer-
cised, as most time–frequency transforms implicitly average many
data points to create each coefficient. For example, each coeffi-
cient in the continuous wavelet transform (CWT) at any scale L
has a time-domain ‘cone of influence’ Cw ∝ LB, where B is the
mother wavelet’s filter width (Mallat 1989; Daubechies 1992; Ku-
mar & Foufoula-Georgiou 1997). Similarly, the discrete wavelet
transform (DWT) at any level j measures changes in averages of
Xt on scale lengths L = 2j, giving each wavelet coefficient Wjt a
cone of influence C ∝ 2jF (Percival & Walden 2000, chap. 4). Thus
the polarization of wavelet coefficients is never truly instantaneous;
this implicit averaging reduces the energy of seismic phase arrivals
relative to that of background noise. Thus, eq. (12) is well-suited
to time–frequency extension, but a static similarity measure like
eq. (11) would perform poorly in the wavelet domain.

We now demonstrate time–frequency extension of polariza-
tion similarity using the undecimated ‘maximal overlap’ DWT

(MODWT) of Walden & Cristan (1998). Computing polarization
from a complex CWT produces equivalent information to com-
puting polarization from the analytic extension of the MODWT at
scales j = 2L (for scale parameter L, j = 1, 2, ... J). This follows
from the fact that the MODWT can be formed from the CWT taken
at these scales; exact equivalence is demonstrated in Percival &
Walden (2000) and Walden & Cristan (1998, chap. 5). Due to the
choice of mother wavelet, very minor differences can arise between
this approach and CWT-based techniques (e.g. Gao et al. 1999;
Kulesh et al. 2007); the CWT also allows more freedom in choice
of scales if perfect reconstruction is not required. In this work,
we use a length 16 ‘least asymmetric’ mother wavelet because of
its excellent frequency localization properties (Jones et al. 2012a,
fig. 1).

Fig. 6 suggests that polarized noise may affect some sensors
in the geophone array; this is somewhat surprising considering
the sample event postdates peak resource extraction by several
months. Time–frequency analysis is a natural way to constrain
the potential source(s). For example, sensor installation errors (e.g.
poor geophone clamping) are a well-documented noise source in
borehole arrays (St-Onge & Eaton 2011; St-Onge et al. 2013). If
polarizations are similar in part of the frequency spectrum before
the P onset in the sample data, then noise generated by individual
sensors is unlikely to be the cause.

Figs 13 and 14 show the resulting time–frequency polarization
similarity for the earthquakes of Figs 5 and 10, respectively. Note
that data are detrended for this procedure, but not bandpass filtered;
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Figure 11. Relief plot of Sαk for the P arrival of the 2013 Mw = 8.3 Sea of Okhotsk earthquake using trace data from CNSN permanent broad-band stations
(Fig. 10). Top plot shows z-component data from station HYT as a reference. Vertical axes on relief images are labelled with sensor names. To generate this
figure, in addition to the preprocessing in Table 3, seismograms were band reject filtered with a two-pole Butterworth filter (corners 0.2 and 0.8 Hz) to remove
the oceanic microseism.

however, polarization similarity is not shown for the scaling coeffi-
cients because the fc = 15 Hz geophones are insensitive to very low
frequencies (Caffagni et al. 2015). Histogram windows are length
1 s for each event, computed every 0.2 s.

It is immediately clear that the noise is similarly polarized across
the entire array at frequencies f ≥ 5 Hz. Because Pg is emergent, and
the upgoing waves are presumably scattered by the heterogeneous
structure of the hydraulic fracture network, S̄θk and S̄φk decrease
at the Pg onset in Fig. 14. We therefore conclude that the simi-
lar polarizations cannot arise from instrument self-noise or other
localized sensor noise. Anthropogenic noise is also unlikely be-
cause the Sea of Okhotsk event occurred at 11:44 p.m. local time

(UTC -6). It therefore appears that a persistent, high-frequency
(f ≥ 5 Hz) seismic source was active near the Hoadley, AB array at
both times.

Coherent noise and tremor-like signals were previously seen
in hydraulic fracture monitoring by Tary et al. (2014), with the
former ascribed to mechanical pumping. However, spectrograms
(e.g. Fig. 5) lack the characteristic narrowband resonances of the
latter. Given that these records postdate hydraulic fracture treatment
(2012 September 17–18) and peak resource extraction (December
2012–January 2013), the noise source could be mechanical pump-
ing from another hydraulic fracture. However, the possibility of a
tremor-like source arising from fluid propagation in the hydraulic
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Figure 12. Relief plot of Sαk for the P arrival of the 2013 Mw = 8.3 Sea of Okhotsk earthquake at the Hoadley, AB array (Fig. 5). Top plot shows z-component
data from the shallowest geophone in the array. Vertical axes on relief images are labelled with sensor names.

fracture network, with a different source process than that described
in Tary et al. (2014), cannot be ruled out. These possibilities are
speculative, however. As of this writing, only a few works have
focused on low-frequency signals recorded during hydraulic frac-
tures (e.g. Tary & van der Baan 2012; Das & Zoback 2013a,b; Tary
et al. 2014); none of their reported signal characteristics match the
pre-arrival noise in Figs 9 and 12–14. Thus, constraining possible
noise sources and their relationships (if any) with hydraulic fracture
treatment will be the subject of future work.

6 C O N C LU S I O N S

In this paper, we introduce a robust method for quantitative compar-
ison of seismic polarization attributes. Using overlapping windows
of attribute histograms, we can study how polarization similarity
changes before and during phase arrivals. Because our method
determines similarity in a way that accounts for the varying signal-
to-noise ratios of real data, this technique could provide an effective
means of identifying seismic phases in noisy environments. Poten-
tial uses include diagnosing site effects, identifying reflected and
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Figure 13. Time–frequency decomposition of average polarization similarity for each attribute, using the earthquake and array of Fig. 5 and MODWT detail

coefficients W̃(D)
j ( j = 1 : 1 : 5). Frequency (y-axis) uses an octave scale. Top plot shows z-component data from geophone H01.

converted phases, and detecting noisy or misaligned sensors with-
out the need for additional perforation shots. In the latter case,
detecting relative misalignment of sensors within an array is pos-
sible even when the absolute sensor orientations are unknown.
Our technique is easily implemented as an extension of exist-

ing polarization analysis routines. Applying our method to noise
recorded in a borehole at Hoadley, AB demonstrates identification
of sensor noise; time–frequency analysis suggests a seismic source
persisted near the monitoring array several months after peak re-
source extraction.
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Figure 14. Time–frequency decomposition of average polarization similarity for each attribute of the 2013 Sea of Okhotsk earthquake (Fig. 10), using data

from the Hoadley, AB geophone array (Fig. 5) and MODWT detail coefficients W̃(D)
j ( j = 1 : 1 : 5). Frequency (y-axis) uses an octave scale. Top plot shows

z-component data from geophone H01.
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A P P E N D I X A : DATA A N D R E S O U RC E S

Two data sets were used in this paper.
Data for the Mw = 8.3 Sea of Okhotsk earthquake were obtained

by anonymous FTP using the CNSN AutoDRM online request sys-
tem in September 2014. All CNSN stations used in this paper are
CMG-3T broad-band sensors (fc = 1/120 Hz, hd = 0.707) sam-
pling continuously at fs = 100 Hz. The stations occupy permanent
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monitoring sites in southern Yukon Territory and northern British
Columbia, Canada. These data may be requested directly from
the CNSN at: http://www.earthquakescanada.nrcan.gc.ca/stndon/
AutoDRM/autodrm_req-eng.php.

Regional earthquake data were provided by the Microseismic
Research Consortium, a joint venture of the University of Al-
berta, University of Calgary, and numerous industry sponsors.
In 2012–2013, the consortium deployed a vertical borehole ar-
ray of three-component passive triaxial geophones (fc = 15 Hz,
hd = 1.0) to monitor an open-hole multistage hydraulic fracture
treatment at Hoadley gas field, central Alberta, Canada. The exper-
iment recorded several months of continuous data at fs = 4000 Hz.
Station spacing ranged from ∼15 to 30 m across the array,
with total vertical aperture ∼230 m. Two sensors (H03 & H11)
were excluded from the analysis due to sensor noise and poten-
tial timing issues. These data may be requested by contacting
Prof David W. Eaton.

All data analysis programs were written in Matlab R2014a (8.03).
They are available upon request from Dr Joshua Jones.

A P P E N D I X B : P R E P RO C E S S I N G

All data were converted to ASCII format, detrended and downsam-
pled from their original sampling rates, then filtered with a two-pole
Butterworth bandpass filter. Downsampling and filtering parameters
are given in Table 3; all data were corrected to hd = 0.707 at the
new critical frequency.

For the borehole array data, instrument response was flattened to
fc = 3 Hz for the regional event and fc = 0.2 Hz for the teleseism.
Data were then rotated to the [Z N E] coordinate system of eqs (2)
and (3) using empirical corrections to sensor azimuths determined
from high S/N P arrivals of local and teleseismic earthquakes, in-
cluding the Mw = 8.3 Sea of Okhotsk event.

During polarization analysis all traces from both data sets were
time-aligned using optimal shifts ξ k for Z-component data, as deter-
mined via the least-squares waveform cross-correlation technique
of Vandecar & Crosson (1990). We imposed the additional con-
straint max (|ξ k|) = 0.1 s on the borehole array data to prevent cycle
skipping errors.

http://www.earthquakescanada.nrcan.gc.ca/stndon/AutoDRM/autodrm_req-eng.php
http://www.earthquakescanada.nrcan.gc.ca/stndon/AutoDRM/autodrm_req-eng.php

