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Seismic resonances of spherical acoustic cavities

Abstract4

We study the interaction of a seismic wave-field with a spherical acoustic gas- or fluid-filled5

cavity. The intention of this study is to clarify whether seismic resonances can be expected,6

a characteristic feature, which may help detecting cavities in the subsurface. This is impor-7

tant for many applications, as in particular the detection of underground nuclear explosions8

which are to be prohibited by the Comprehensive-Test-Ban-Treaty. In order to calculate9

the full seismic wave-field from an incident plane wave that interacts with the cavity, we10

considered an analytic formulation of the problem. The wave-field interaction consists of11

elastic scattering and the wave-field interaction between the acoustic and elastic media.12

Acoustic resonant modes, caused by internal reflections in the acoustic cavity, show up as13

spectral peaks in the frequency domain. The resonant peaks coincide with the eigenfrequen-14

cies of the undamped system described by the particular acoustic medium bounded in a15

sphere with stiff walls. The filling of the cavity could thus be determined by the observa-16

tion of spectral peaks from acoustic resonances. By energy transmission from the internal17

oscillations back into the elastic domain, the oscillations experience damping, resulting in a18

frequency shift and a limitation of the resonance amplitudes. In case of a gas-filled cavity19

the impedance contrast is still high, which means low damping of the internal oscillations20

resulting in very narrow resonances of high amplitude. In synthetic seismograms calculated21

in the surrounding elastic domain, the acoustic resonances of gas-filled cavities show up as22

persisting oscillations. However, due to the weak acoustic-elastic coupling in this case the23

amplitudes of the oscillations are very low. Due to a lower impedance contrast, a fluid-filled24

cavity has a stronger acoustic-elastic coupling, which results in wide spectral peaks of lower25

amplitudes. In the synthetic seismograms derived in the surrounding medium of fluid-filled26

cavities, acoustic resonances show up as strong but fast decaying reverberations.27
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Seismic resonances of spherical acoustic cavities

Introduction30

Investigation and detection of underground cavities is a challenge that is an essential ingredi-31

ent for the realization of the Comprehensive Test Ban Treaty (CTBT), which aims to prohibit32

any nuclear explosion on earth including underground nuclear explosions (UNEs). Verification33

of possible violations of the treaty requires techniques to detect remnants of UNEs as in par-34

ticular the cavity created by melting and compression of the surrounding material. In case a35

suspicious seismic event is detected by the International Monitoring System (IMS) operated by36

the Comprehensive-Test-Ban-Treaty- Organization (CTBTO), each member state can request an37

On-Site Inspection (OSI) at the location of the event. During such an OSI, a field team delegated38

by the CTBTO uses several techniques to verify whether an UNE has been conducted at the39

particular site. Beside aftershocks, radioactive vestiges and suspicious infrastructure, the loca-40

tion and detection of the cavity is a major target during an OSI (Adushkin and Spivak, 2004).41

As seismic technique for cavity detection, the CTBT lists ”Resonance Seismometry”, for which42

a proper definition is still missing and which this work is dedicated to. However, the detection of43

cavities in the subsurface is important in many other aspects as for example for the evaluations44

of the geohazard potential of a region that might suffer sinkhole activity (Krawczyk et al., 2012).45

Unlike other applications as detection of former mines or voids from salt dissolution, only small46

gravimetric anomalies are expected in case of a cavity created by UNEs since no material is lost47

but only compressed and distributed around the cavity. Moreover, for UNEs that are not directly48

visible at the surface, the depth of the cavity is too deep to be registered by ground penetrating49

radar (Houser, 1970). Electromagnetic methods however could also be used to complement the50

observations of a seismic survey.51

In order to compute the interaction of the seismic wave-field with the acoustic cavity, we use52

an analytic approach (Korneev and Johnson, 1993). Similar analytic description had been also53

derived before by Hinders (1991) and re-derived by Ávila-Carrera and Sánchez-Sesma (2006).54

Gritto (2003) invented a scheme using Korneev’s approach for void detection using seismic to-55

mography. Tomographic approaches and seismic reflection from shear wave sources have been56

used successfully to detect tunnels and voids close to the surface (Sloan et al., 2015; Krawczyk57

et al., 2012). Spatial spectrograms can be used for the detection of low velocity inclusions as58

increase of certain spectral peaks (Lambert et al., 2011).59

Korneev (2009) showed that resonances from circumferential waves can be observed for fluid-60

filled cavities. In this paper we focus on acoustic resonances that appear during interaction of the61

seismic wave-field with the cavity which could be utilized for a cavity-detection technique. Using62

an exact analytical solution of the problem, we demonstrate the occurrence of resonance-peaks63

and relate their appearance to the acoustic eigenmodes of the cavity. We show that the resonance64
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Seismic resonances of spherical acoustic cavities

peaks in the frequency-domain translate to internal acoustic reverberations in the time-domain.65

Furthermore the influence of intrinsic attenuation is studied by using a visco-acoustic elastic66

formulation. The analytical approach that we implemented is sketched in the next section. For67

further reading and deeper understanding we also refer to Korneev and Johnson (1996), where68

the derivation is presented in a more detailed way.69

Analytical Approach70

In order to calculate the seismic wave-field in and around a cavity that is exposed to a plane or71

spherical seismic wave, we follow the derivation by Korneev and Johnson (1993). In this approach,72

the vector-valued displacement field is divided in the incident field ũ0 and the secondary fields73

ũ1, which represents the displacement field inside the cavity and ũ2, the scattered field in the74

outer domain, see Fig. 1. In the outer domain, the total displacement field is given by ũ0 + ũ2.75

All displacement fields are assumed to be harmonic in time:76

ũν(r, t) = uν(r)e
iωt, (1)

where ω = 2πf is the angular frequency. Therefore only the spatial problem is solved for77

individual frequencies.78

Throughout this paper, a plane P-wave is considered as incident field, however the formulation of79

Korneev and Johnson (1996) also allows for spherical incident waves and shear waves. The three80

fields are related to each other at the interface of the cavity by certain transmission conditions.81

These transmission conditions take into account the continuity of displacements amplitudes as82

well as the continuity of the traction vector on the sphere defined by the cavity interface. For the83

case of an acoustic medium inside the cavity, only the normal components need to be considered:84

u1 · n = (u0 + u2) · n (2)

t(u1) · n = t(u0 + u2) · n, (3)

where the traction vector t on the spherical surface with unit radius r̂ and the Lamé parameters85

λ and µ is given by86

t(u) = λ∇ · u r̂+ 2µ
∂u

∂r
+ µ[r̂×∇× u]. (4)

General formulations of the three displacement fields are derived by making use of the spheri-87

cal symmetry of the setting and expanding the three displacement fields in terms of spherical88

harmonic vectors Y+,−
lm

.89

The representation of a plane incident P-wave directing along the positive z-axis in terms of
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Seismic resonances of spherical acoustic cavities

spherical harmonic vectors is:

u0 = eikpz ẑ

=
∑

l≤0

(

jl+1(kpr)Y
+
l0
− jl−1(kpr)Y

−
l0

)

exp(−
iπ(l + 1)

2
), (5)

where kp = (2πf)/vp is the wave number of the P-wave and ẑ is the unit vector in z-direction.90

Korneev and Johnson (1996) show that the secondary displacement fields inside and outside the

spherical cavity can generally be written in the form

u1 =
∑

l≤0

(

(

a
(1)
l jl+1(kp,1r) + l b

(1)
l jl+1(ks,1r)

)

Y+
l0

+
(

−a
(1)
l jl−1(kp,1r) + (l + 1) b

(1)
l jl−1(ks,1r)

)

Y−
l0

)

exp(−
iπ(l + 1)

2
) (6)

and

u2 =
∑

l≤0

(

(

a
(2)
l hl+1(kp,2r) + l b

(2)
l hl+1(ks,2r)

)

Y+
l0

+
(

−a
(2)
l hl−1(kp,2r) + (l + 1) b

(2)
l hl−1(ks,2r)

)

Y−
l0

)

exp(−
iπ(l + 1)

2
). (7)

Here, kp/s,1 and kp/s,2 are the wave numbers of P/S-waves inside and outside of the cavity,91

respectively. The spherical Bessel functions (jl) and spherical Hankel functions of the second92

kind (hl) are regular at the origin and satisfy the radiation condition at large distances, respec-93

tively. In this way the solution of the problem is reduced to finding the right scalar coefficients94

aνl and bνl , which are determined by imposing the transmission conditions at the acoustic-elastic95

interface, given in Eqs. 2 and 3. This yields a set of linear equations for each l which can be96

solved iteratively. Analytic expressions for aνl and bνl depending on frequency and the model97

parameters density, compressional and shear velocities (ρ, vp and vs) of the elastic and acoustic98

domains are given in the Appendix of Korneev and Johnson (1993).99

Acoustic resonances100

Appearance of resonant peaks101

The appearance of acoustic resonances inside the cavity are studied for the cases of a gas-filled102

and a fluid-filled cavity in an elastic surrounding. The parameters chosen for the study are listed103

in Table 1. For the size of the cavity a radius of 30 m is chosen. The scattering regime, defined104

by the ratio of the circumference and the wave length105

U

λ
=

U

vp
f =

2πR

vp
f, (8)
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Seismic resonances of spherical acoustic cavities

depends on the frequency f of the incidence wave. For our choice of elastic parameters the factor106

2πR
vp

is approximately 0.05 s, i.e. our simulations are in the regime of Rayleigh scattering for107

frequencies f < 20 Hz (U/λ < 1), in the regime of Mie scattering for f ≈ 20 Hz (U/λ ≈ 1) and108

in the regime of geometrical scattering for f > 20 Hz (U/λ > 1).109

Using the analytic approach described in the previous section, the amplitude spectra of the110

scattered wave-field from an incident P-wave are derived at the locations depicted in Fig. 2111

inside and outside of the cavity for different acoustic parameters, representing different fillings of112

the cavity. Fig. 3 shows the amplitude spectrum of the scattered field outside the cavity (positions113

depicted as red dots in Fig. 2) if the cavity is empty, i.e. the density of the acoustic medium is114

zero which is referred to as the case of a vacuum inclusion. The spectra of the vacuum inclusion115

are smooth functions that are monotonously increasing for small frequencies. In the transmitted116

wave-field (θ = 0) the spectrum shows long-period modulations. We consider vp = 4000 m/s as117

a reference value. Amplitude spectra for vp = 3000 m/s and vp = 5000 m/s (and vp/vs=1.73),118

depicted in dashed lines, show that the velocity of the outer medium controls the frequency of the119

modulations. For the other scattering angles (θ > 0) the spectra are also stretched or squeezed120

for faster and lower velocity of the elastic medium, respectively.121

Amplitude spectra of the cavity filled with an acoustic medium are calculated inside and outside122

of the cavity at the locations shown as blue and red dots in Fig. 2. The upper and lower halfs123

of each panel in Figs. 4 and 5 show the corresponding spectra inside and outside the gas- and124

fluid-filled cavity.125

In the gas-filled case (Fig. 4), the spectra from the outer domain behave similar to the spectra126

from the vacuum inclusion (depicted with dashed green lines) with the difference that sharp127

resonance peaks are present on top of the spectral variation of the vacuum inclusion. Peaks128

occur for both domains inside and outside the cavity at the same frequencies. However, the129

amplitudes of the peaks inside the cavity have five orders of magnitude higher values than those130

outside the cavity. These high amplitudes of the inner oscillations and the co-appearance of the131

spectral peaks at the same frequencies suggest that excitation of resonant modes in the acoustic132

domain is responsible for the spectral peaks also in the elastic domain.133

For the fluid-filled cavity (Fig. 5), the spectra from the outer domain also follow the spectra from134

the vacuum inclusion, but the deviations from the case of the vacuum inclusion form broader135

peaks of lower amplitudes compared to the case of a gas-filled cavity. The spectra inside the136

fluid-filled cavity also show broad resonances coinciding with the deviations from the case of137

vacuum inclusion in the outer domain. For the fluid-filled cavity, the amplitudes of the resonant138

peaks inside and outside the cavity are comparable in size.139
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Seismic resonances of spherical acoustic cavities

Eigenfrequencies of the acoustic cavity140

To approximate the resonant frequencies of the acoustic-elastic system, the eigenfrequencies of141

an acoustic cavity with stiff boundaries are derived for the case of boundaries that do not move142

at all. Therefore the displacement field has to become zero at the boundary of the cavity. This143

is expressed mathematically by Dirichlet boundary conditions. However, in the purely acoustic144

domain, it is easier to consider the scalar pressure field instead of the 3D displacement field. The145

3D-displacement field can be derived from the scalar pressure field P̃ (r, t) by Newton’s law146

∇P̃ (r, t) = −ρ
∂2

∂t2
ũ(r, t), (9)

which turns in the considered time-harmonic case into147

u =
1

ρω2
∇P. (10)

Hence, the eigenfrequencies of the pressure and displacement fields are identical. For the pressure,148

Neumann boundary conditions have to be considered for the case of stiff walls. The eigenvalues149

are derived by applying a product ansatz P = R(r)Y (θ, φ), that separates radial and angular150

components, to the scalar Helmholtz equation151

∆P + k2P = 0, k = ω/vp. (11)

The solutions of the radial part are152

R(r) = jl(kr), (12)

where jl are the spherical Bessel functions (see for example Budak et al. (1988) or Grebenkov and153

Nguyen (2013)). For Neumann boundary conditions, the first derivative j′l(kr) has to become154

zero at r = R, which lead to the eigenfrequencies155

fnm =
j′nm vp
2 π R

, (13)

where j′nm are the m-th root of the derivative of the n-th spherical Bessel function. For the156

displacement, the first derivatives of the spherical Bessel functions j′n(knmr) describe the radial157

part of the eigenmodes, when knm = 2πfnm/vp. The roots j
′
nm have been derived numerically for158

spherical Bessel functions of order zero to five. The vertical bars in the lowermost panels in Fig. 4159

and Fig. 5 show the eigenfrequencies substituting the corresponding parameter values (R = 30 m160

and vp = 300 m/s or vp = 1400 m/s for the gas- or fluid-filled cases) in Eq. 13. For each order of161

the spherical Bessel function there exist a discrete set of eigenvalues. To distinguish the order of162

the Bessel function, each set of the corresponding eigenvalues is displayed with a different height163

as noted at the y-axis. For both the gas-filled and the fluid-filled cavity, the eigenfrequencies164

coincide with the spectral peaks derived from the calculation of the full wave-field. While for the165

gas-filled case the match seems to be very close, in the fluid-filled case the resonant frequencies166

of the acoustic-elastic system appear to be shifted to lower frequencies.167
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Seismic resonances of spherical acoustic cavities

Nature of resonances168

In Fig. 6, the appearance of acoustic resonances is illustrated by the example of the eigen-169

mode j04. The computation has been derived for the gas-filled cavity at the eigenfrequency170

fres = 22.387 Hz. We computed the full wave-field for an incident P-wave with frequencies fres171

as well as slightly below and above it. Only the incident fields for slightly larger and smaller172

frequencies than the resonance frequency (f = 22.0 Hz and f = 22.5 Hz) are displayed here. The173

scattered fields in the elastic domain for frequencies larger and smaller than the eigenfrequency174

are similar to each other. Even if the pattern inside the cavity changes, no effect is visible in175

the outer domain where the scattered field is dominated by the reflected incident field. At the176

eigenfrequency of the cavity, the scattered field shows strong deviations from the scattered field177

for f = 22.0 Hz and f = 22.5 Hz. Inside the cavity an eigenmode is excited leading to the target178

pattern of the radial component with large amplitudes. Fig. 6 d shows a zoom into the cavity179

for the excited resonant mode. As expected for the Neumann-mode j04, the radial component of180

the displacement coincides with the derivative of the Bessel function j′0, which has four zeros for181

30 ≥ r > 0, corresponding to four antinodes between the center and the boundary of the cavity.182

At the eigenfrequency, in addition to the reflection of the incident field, transmitted energy from183

the cavity back in the outer domain provide a significant part of the scattered field. In the total184

fields, which are displayed in the right column of Fig. 6, an effect of the resonance is visible185

also in the elastic domain. While for f = 22.0 Hz and f = 22.5 Hz the total fields in the outer186

domain are similar to each other, in case of the excited eigenmode some part of the incident field187

is suppressed above the cavity.188

To study the dependency of the resonance peaks from the impedance contrast between the189

acoustic medium inside the cavity and the elastic surrounding medium, the effect of changing190

density of the acoustic medium on the resonance peaks is investigated. By changing the density,191

the impedance Z = ρvp of the acoustic medium is changed without affecting the eigenfrequency192

of the acoustic cavity, since the eigenfrequency is determined by the radius (R) and the velocity193

(vp) of the medium only (see Eq. 13). As examples, in the following, the resonance peaks at194

eigenmodes j04 and j13 are shown to demonstrate the effect of a changing impedance contrast195

for a gas- and fluid-filled cavity, respectively.196

Gas-filled cavity197

Fig. 7 shows the resonant peak for Neumann mode j04 at 22.387 Hz, for different densities of the198

acoustic medium, inside (a) and outside (b) of the cavity. The velocity of the acoustic medium199

is fixed to 300 m/s, which is the acoustic velocity in gas. The amplitude resonant peak inside200

the cavity shows strong dependency on the impedance contrast. The resonant peak has the201
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Seismic resonances of spherical acoustic cavities

highest amplitude for ρ = 1 kg/m3, which corresponds to the gas-filled case. Duplication of202

the density of the acoustic medium yields bisection of the maximum amplitude of the resonant203

peak. At the same time, the resonant frequency shifts to smaller values. This dependency of204

amplitude reduction and frequency shift of the resonance peak on increasing impedance resembles205

the behavior of a damped driven oscillator for increasing damping. In the outer medium (see206

Fig. 7b) the maximum amplitude of the resonance peak is not affected, however the frequency207

shift to lower frequencies of the maximum amplitude is also observed as well as a broadening of208

the resonance peak. For the gas-filled case (ρ = 1 kg/m3), the resonant peak is the closest to209

the eigenfrequency of the acoustic medium (depicted by the black dashed line) and shows the210

narrowest width.211

In Fig. 8a, the phase difference of the complex displacement field inside and outside the cavity212

is shown. As expected for a damped driven oscillator, the value of the phase-difference performs213

a shift of 2π at the resonance frequency. As in case of increasing damping of the damped214

driven oscillator, the phase shift becomes smoother for increasing density, which corresponds to215

a decreasing impedance contrast between cavity and surrounding medium.216

Fluid-filled cavity217

The spectra in Fig. 4 and Fig. 5 show that for the case of a fluid-filled cavity the resonance peaks218

are less sharp and much lower in amplitude than in case of a gas-filled cavity. As an example,219

the resonant peak for the fluid-filled cavity close to the Neumann mode j13 is investigated.220

The seismic velocity of the fluid is fixed to 1400 m/s and the impedance contrast is varied by221

changing the density of the acoustic medium. The fluid-filled case corresponds to the density222

ρ = 1024 kg/m3. Fig. 8b shows the phase difference of the complex displacement field inside223

and outside the cavity. While for higher impedance contrast (ρ = 128 kg/m3) a phase shift224

at the eigenfrequency is present similar to the phase shift of gas-filled cavity shown in Fig. 8a,225

for increasing densities the phase shift becomes less apparent. The amplitude peaks inside and226

outside the cavity are shown in Figs. 9 a) and b), respectively. As in case of the gas-filled cavity,227

the peak amplitude inside of the cavity is strongly affected by variation of the density. The228

peak prominence is decreasing for increasing densities, while the width increases. In the elastic229

domain the amplitude is less affected, but decreases for increasing density. As in the gas-filled230

case, the width of the resonance peak is increasing for increasing density.231

Compared to the gas-filled case, in the case of a fluid-filled cavity the energy transmission from232

the acoustic cavity into the elastic domain is higher causing higher damping of the internal233

oscillations. The vanishing phase shift and shrinking peak prominence for higher values of ρ234

suggest that the system is close to the over-damped case, where resonances naturally vanish.235
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Seismic resonances of spherical acoustic cavities

Wave-field along seismic profile236

To mimic an experimental setup for a field campaign, we computed the seismic wave-fields for a237

profile 250 m above the cavity for a plane incident wave from below. The geometry is shown in238

Fig. 10. Note that no free-surface is included in the model, however the spectral characteristics of239

the wave-field-cavity interaction should not be affected. The parameters chosen for the gas-filled240

and fluid-filled cavity and the outer elastic medium are again those listed in Table 1.241

Spatial spectrograms242

The amplitude spectra of the scattered fields along the profile are shown in Fig. 11 as spatial243

spectrograms. Figs. 11 a) and b) show the spatial spectrograms for the gas-filled and fluid-filled244

cavity, respectively. The long period variations, which are determined by the geometry of the245

cavity and the velocity of the surrounding medium, in both cases look very similar. These long246

period variations vary with the distance from the cavity. This pattern is overprinted with the247

resonance frequencies of the cavity, which are independent of the distance and therefore show248

up as vertical lines in the spatial spectrograms. In Figs. 11 c) and d), the long period variations249

are filtered out by applying a high-pass filter to the spectrum. In this way the long amplitude250

variations from the external scattering of the cavity are suppressed and the resonance frequencies251

are enhanced. In Fig. 11 c), for the gas-filled cavity a zoom into the frequency range 0−32.14 Hz252

is shown. Since the eigenmodes depend on the acoustic velocity, the gas-filled cavity shows in this253

range the same eigenmodes as the fluid-filled cavity in the range 0−150 Hz, shown in Fig. 11 d).254

Note that the resonant peaks are slightly shifted with respect to the Neumann-modes, depicted255

as dashed lines, which is apparent only in the fluid-filled case.256

Synthetic seismograms257

From the time-harmonic solutions derived for individual frequencies, synthetic seismograms are258

computed by inverse discrete Fourier transformation. Time-harmonic solutions corresponding to259

frequencies ranging from 0.1 Hz to 200 Hz with intervals ∆ f of 0.1 Hz were superimposed and260

a Gaussian taper function of the form261

g(ω) = e−(
ω

2πa
)
2

(14)

with a = 100 Hz was applied in order to generate a Gaussian pulse as incident field. This yields262

synthetic seismograms263

sν(r, t) = Re(
∑

ω

uω,ν(r) g(ω) e
iωt), (15)

where ν = 0 and ν = 2 corresponds to seismograms for the incident and scattered field, respec-264

tively. Seismograms for the total field are computed by summation of incident and scattered265
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Seismic resonances of spherical acoustic cavities

wave-field seismograms s0(t) and s2(t).266

We computed synthetic seismograms for all locations along the profile (Fig. 10). Traces of Fig. 12267

represent synthetic seismograms for the gas-filled cavity. The vertical aligned arrival at 0.065 s268

in Fig. 12a represents the incident plane P -wave pulse, which is only visible on the vertical269

component of the total field. The later arrivals are a reflected P -wave followed by a P -to-S270

converted wave scattered at the cavity. On the horizontal component of the total field displayed271

in Fig. 12b, only scattered waves are present since the incident wave consist only of vertical272

particle motion. Fig. 12c and Fig. 12d show only seismograms from the scattered wave-field273

u2. Here the synthetic seismograms are rotated with respect to the cavities center in order to274

separate scattered P - and S-energy on L- and Q-component, respectively (orientation of L and275

Q depicted in Fig. 10). In Fig. 12a and Fig. 12b two v-shaped arrivals are present, the earlier one276

from the scattered P - and the later one the scattered S-energy. On the L-component in Fig. 12c277

only the earlier v-shaped phase from the scattered P-energy is present which is suppressed on the278

Q-component, shown in Fig. 12d. Note that, since the scatterer is not just a point, separation279

of P-and S-energy works not perfectly for low distances from the cavity.280

Fig. 13 shows the same scenario as Fig. 12 for a fluid-filled cavity. Since the outer medium is281

the same, incident wave and primary scattered waves behave very similarly to the case of the282

gas-filled cavity. However, multiple reverberations that show up as later arrivals of the primary283

scattered waves are present. On the L- and Q-component in Fig. 13c and Fig. 13d, it is apparent284

that P -and S-waves originate from the cavity, since in each figure later v-shaped arrivals could be285

isolated from waves that travel with P- and S-velocities, respectively. Thus, the cavity becomes a286

secondary source of a damped oscillating signals. In the next section we show that these signals287

originate from energy trapped in internal oscillations in the acoustic medium.288

The presented computations in this section have been done for the transmission regime. Compu-289

tations for the back-scattered regime show equivalent results in terms of appearance of resonances.290

For comparison, the results are shown in the Appendix.291

Internal reflections as cause of acoustic resonances292

In this section we investigate the transition from a fluid-filled cavity with strong visible rever-293

berations to the gas-filled cavity, where the synthetic seismograms show only signals from the294

primary scattered waves. To study the influence of velocity and density, multiple synthetic seis-295

mograms for changing parameters are derived. Each parameter is varied individually starting296

with the parameter set of a fluid-filled cavity. Firstly, only the velocity of the acoustic medium297

is reduced without changing its density (Fig. 14). In Fig. 15 the 3D-wave-field for an impulsive298

source is investigated on a 2D-section through the cavity in order to get an insight into the dy-299
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Seismic resonances of spherical acoustic cavities

namics of the interacting wave-fields. In a later step, the density is decreased without changing300

the acoustic velocity (Fig. 16 and 17).301

The upper row in Fig. 14 shows a synthetic seismogram of the back-scattered field (φ = π)302

outside of the cavity for the fluid-filled cavity ( v1 = 1400 m/s, ρ1 = 1024 kg/m3). On the left, a303

zoom into the first 0.4 s that contains the primary scattered wave for t < 0.27 s is shown. On the304

right, a time series of 6 s is displayed. For v1 = 1400 m/s, strong later arrivals follow the primary305

scattered wave at t = 0.28 s that is damped out fast. Decreasing v1 yields a shift of the later306

arrivals to longer times. Lines 2-5 of Fig. 14 show similar synthetic seismograms as in the first307

line with successively decreased velocity of the acoustic medium. The primary scattered pulse308

(t < 0.27 s) remains for all lines the same while the signal from the later arrivals are stretched,309

they become initially smaller in amplitude but more persistent over time.310

For the parameter set of the lowest panel in Fig. 14 (v1 = 300 m/s and ρ1 = 1024 kg/m3), the full311

wave-field for a linear source pulse is computed by deriving synthetic seismograms on a 2D-grid312

through the cavity. To derive 2D-sections we computed synthetic seismograms, as described in313

the previous section, at about 40000 locations on a vertically oriented 400 m× 400 m grid with314

a grid spacing of 2 m. Snap-shots of the generated movie are displayed in Fig. 15, where the z-315

component of the total field is displayed color-coded for a sequence of nine points in time between316

t = 0.2 s (Fig. 15a) and t= 0.625 s (Fig. 15i). In Figs. 15a and 15b the incident linear impulsive317

source is passing the cavity and the primary scattered wave-field is generated. Moreover a field318

is induced into the cavity describing an up and down bouncing wave. Firstly it is propagating319

upwards (Figs. 15c - 15d). Then a part of the induced acoustic field from within the cavity320

couples out back into the elastic domain starting at t ≈ 0.3975 s mainly towards the upper321

hemisphere (Figs. 15e - 15f). The remaining part of the upgoing wave is reflected at the upper322

wall of the cavity resulting in a downward propagation (Fig. 15g). At t ≈ 0.6 s (Figs. 15h - 15i)323

a part of the acoustic field couples out again in the elastic domain, this time mainly towards the324

lower hemisphere. Hence the later arrivals in Fig. 14 are caused by internal reverberations of325

the acoustic medium coupling out into the elastic domain again. For decreasing v1, the internal326

reflections need more time to cross the cavity which causes the stretching of the pattern. Further,327

the impedance contrast increases for decreasing v1 which causes a decrease of the transmission328

coefficient and hence the damping of the internal oscillations to decay. This explains the longer329

persistence of the later arrivals.330

As the lowest line of Fig. 14, the uppermost line of Fig. 16 shows again synthetic seismograms331

of the scattered field for the parameter set used for the computation of the snapshots in Fig. 15.332

Here the internal reflections show up as repeating signals with ≈ 1/10 amplitude of the primary333

scattered wave. The 2nd to 5th lines show the transition to the gas-filled cavity by decreasing334

the density of the acoustic medium successively to 1 kg/m3, which corresponds to the gas-filled335
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case. The left column show that the primary scattered wave is not strongly affected by changing336

the density of the acoustic medium. The later arrivals, caused by internal reflections does not337

change their internal distances, whereas their amplitudes become smaller and are not visible338

anymore in the gas-filled case.339

Zooming into the traces, as shown in Fig. 17, however shows, that the peaks from internal340

reflections are present also for lower densities. On the one hand, for lower densities the amplitudes341

become smaller, but on the other hand also the decay of the oscillations becomes slower. Thus,342

the signals become more persistent in time, which can again be explained by the lower damping343

of the internal oscillations due to the decreasing energy transmission for an increasing impedance344

contrast.345

Effect of intrinsic attenuation for gas-filled cavities346

So far no intrinsic attenuation has been considered in the modeling. Mathematically, this is ex-347

pressed by the imaginary parts of the Lamé parameters λ and µ being zero. Acoustic attenuation348

in gas and water are very small, which is why it can be neglected in most applications. In the case349

of resonances however a small attenuation can have a large effect. Without considering internal350

attenuation the damping of the waves inside the cavity is only given by the energy transmission351

through the interface. In case of a gas-filled cavity the impedance contrast at the interface is352

very high resulting in a low energy loss from the acoustic into the elastic medium. In this section353

the effect of intrinsic attenuation in the acoustic medium is studied for the gas-filled cavity, since354

for this case, attenuation can account for a significant part of the damping of internal oscillation.355

Since in any case µ = 0 in the acoustic domain, only the effect of a non-zero imaginary part of356

λ is investigated.357

The attenuation of acoustic waves in air, namely Im(λ), is frequency-dependent. We used the358

attenuation values for air at the surface, given as attenuation coefficient α by Sutherland and359

Bass (2006), and transferred them to values of the seismic Q-factor, defined as360

Q =
Re(λ)

Im(λ)
. (16)

The conversion from α to the Q-factor is given by (Carcione, 2014)361

Q =
πf

vpα
. (17)

The resulting Q-values are given in Fig. 18. The discrete values for Q are fitted by the function362

Q(f) = a/f with a = 64.1 kHz, which we used to compute Q-values for each frequency.363

The intrinsic attenuation is implemented in the analytical solution by taking into account complex364

velocities. For vanishing shear modulus, real and imaginary parts of λ can be expressed as365

Reλ = v2p ρ (18)

14

A
cc

ep
te

d 
A

rti
cl

e

 
This article is protected by copyright. All rights reserved.



Seismic resonances of spherical acoustic cavities

and, by definition of Q in Eq. 16,366

Imλ =
Reλ

Q
=

v2p ρ

Q
, (19)

which yields for the complex p-velocity cp of the attenuated acoustic medium367

cp =

√

λ

ρ
= vp

√

1 +
i

Q
, (20)

where vp is the p-velocity of the unattenuated medium.368

The effect of intrinsic attenuation is displayed in Figs. 19 and 20. Fig. 19 compares the unat-369

tenuated case to the case considering intrinsic attenuation. In Figs. 19a and 19b, the spectral370

amplitudes of the total field are shown for the back-scattering domain (θ = 180◦) and Figs. 19c371

and 19d show the corresponding seismograms derived by inverse Fourier transform, for the unat-372

tenuated and the attenuated case, respectively. In the seismograms a zoom factor is chosen373

to display the internal reflections corresponding to the acoustic resonances. The acoustic reso-374

nances, showing up as sharp peaks in the spectrum, are strongly decreased for the attenuated375

case. Due to the frequency dependence of Q (see Fig. 18) larger frequencies are more strongly376

affected by the attenuation and the resonance peaks are hardly visible for f > 20 Hz. In the377

corresponding seismograms, however, the differences are not very strong in the first 30 s. The378

attenuation of the internal oscillations becomes evident after roughly 10 s.379

In practical applications the size of the resonance peaks also depends on the length of the time380

window that is involved in the measurement. Since the oscillation is decaying faster for the381

attenuated case the effect of attenuation in the spectrum is larger for longer time windows.382

To demonstrate this we recalculated the spectrum from the synthetic seismograms taking into383

account a short time window (30 s) and a long time window (1h) and compare the attenuated384

and the unattenuated cases. To expose the resonance peaks a high pass (HP) filter is applied to385

the spectrum. For the HP-filtered spectrum AHP (f), the spectrum A(f) is filtered by386

AHP (f) = F
−1(F (|A(f)|) T (t)), (21)

where F is the Fourier transform and T (t) is a taper function obeying T (t) = 0 for |t| < 0.5 s,387

T (t) = 1 for |t| > 0.5 s, and T(t) having with a smooth transition from 0 to 1 for 0.5 s < |t| < 1.5 s.388

The spectrum and the HP-filtered spectrum for the short time window (30 s) are shown in389

Figs. 20a and 20b, the corresponding spectra for the long time window (1h) is displayed in390

Figs. 20c and 20d. For the short time window the absolute size of the resonant peaks is small.391

Thus, the resonant peaks are only visible in the HP-filtered version of the spectrum (Fig. 20b).392

In this figure the difference of the attenuated (green solid line) and unattenuated case (thin black393

dashed line) is small. For the long time window the spectral peaks become larger and are also394

visible in the direct spectrum (Fig. 20c). In the HP-filtered version (Fig. 20d) the difference of the395
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attenuated and the unattenuated case become clearly evident. Resonance peaks are decreased396

and the difference is increasing for larger frequencies.397

From this investigation it can be concluded that attenuation can not be neglected for the case398

of acoustic resonances in a gas-filled cavity. For realistic attenuation parameters the observation399

of resonance peaks in the gas-filled cavity can be expected mainly at low frequencies and can be400

emphasized by using additional high-pass filter in the spectral domain.401

Implications and Outlook402

The described results yield some possible diagnostics for cavity detection, which is needed for nu-403

clear verification. As remnants from underground nuclear tests, the cavity is a major structural404

feature that is to be found by nuclear inspectors during On-Site Inspections. The presence of405

acoustic resonances can in principle be detected rapidly through spatial spectrograms as shown406

in Fig. 11. As possible diagnostic tools, either the direct scattered energy from a cavity could be407

used, which shows long period variations in frequency and an increased intensity above the cavity408

(Figs. 11a and 11b), or spectral peaks from acoustic resonances could be extracted (Figs. 11c409

and 11d). The next step is to use this knowledge and apply it to more sophisticated numerical410

simulations and/or real data in order to verify whether acoustic resonances can be resolved in a411

realistic setting. In the presented analytical study, some model simplifications have been consid-412

ered. First, the geometry of the cavity is described by a perfect sphere. In real-live situations413

acoustic resonances could be weakened by defocusing effects. Second, the filling of the cavity is414

assumed to be homogeneous and purely acoustic. However, in real cavities from underground415

nuclear explosions, a rubble zone is present in and around the cavity. Third, all media are as-416

sumed to be isotropic and, fourth, no free surface is present in the presented geometry, i. e. the417

interaction with surface waves is neglected, which could complicate the observation. All these418

issues will be addressed by further studies using e.g. finite-element-modeling that can handle419

more complex geometry and experimental studies of analogue sites. For example, as an analogue420

for a cavity from a nuclear explosions, the CTBTO has selected a natural cavity in northern421

Hungary (Felsőpéteny). At this site, active seismic surveys have been conducted between 2012422

and 2014 (Tóth et al., 2015) that are now planned to be inspected in the light of our theoretical423

findings presented in this paper.424

Conclusions425

Acoustic resonances are present in case of a gas-filled and in case of a fluid-filled cavity causing426

a significant change of the transfer function of the ground compared to the case of a vacuum427

cavity. In the vicinity of a resonant frequency, the acoustic cavity exposed to a seismic wave-field428
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shows a behavior similar to that of a damped driven oscillator: the seismic wave-field acts as429

driving force and the energy transmission from the acoustic back into the elastic domain acts as430

damping of the internal oscillations. In case of no intrinsic attenuation, the damping is therefore431

defined by the inverse of the impedance contrast between the acoustic and the elastic domain.432

In case of a gas-filled cavity, the impedance contrast between elastic and acoustic medium is433

high, which cause low amounts of energy to be transmitted from the acoustic medium back into434

the elastic domain. Internal oscillations are therefore nearly undamped and resonance occurs435

in very narrow frequency ranges, which are very close to the eigenfrequencies of the acoustic436

cavity bounded by stiff non-elastic walls. If the impedance contrast is reduced slightly, the437

damping of the internal oscillations increases in the same amount as the energy-transmission438

to the outer medium increases. Higher damped internal resonance peaks, which are lower in439

amplitude but broader in frequency range, cause therefore broader resonance peaks in the elastic440

domain that have the same peak amplitudes as in the case of unreduced impedance contrast.441

This argumentation holds as long as the damping of the internal oscillations is small and far442

below critical damping where the oscillations become overdamped and the resonances disappear.443

Due to the low damping by means of energy transmission rate in the case of gas-filled cavities,444

intrinsic attenuation of acoustic waves has a significant portion of the overall damping rate and445

can therefore not be neglected, when modeling the resonant behaviour of a cavity. The effect of446

intrinsic attenuation was investigated for the case of gas-filled cavity, where the effect is assumed447

to be largest. For realistic Q values, derived from empirical atmospheric attenuation data, it448

was shown that attenuation has a significant impact on the resonance peaks, especially for large449

frequencies. However, for low frequencies and additional HP-filtering in the spectral domain the450

resonance characteristics of a gas-filled cavity as modeled for the unattenuated case, could be451

captured from the modeling including intrinsic attenuation.452

Fluid-filled cavities have much lower impedance contrasts to the surrounding medium and the453

damping due to energy transmission appears to be close to critical damping. In the synthetic454

seismograms the internal reflections are visible only for the case of the fluid-filled cavity, whereas455

for the gas-filled cavity, the seismograms resemble the seismograms for the vacuum case. This456

is explained by the low spectral width of the resonance peaks in the case of gas-filled cavities,457

which causes the amplitudes of the internal reflections to be very small. However, due to low458

damping of the internal oscillations, they may last over long time series. In case of the fluid-filled459

cavity, the resonance peaks are broader, due to higher damping of the oscillations and a higher460

transmission rate of energy from the acoustic to the elastic medium. Therefore reverberations461

that represent decaying acoustic reverberations become visible in synthetic seismograms.462

In synthetic spatial spectrograms the acoustic resonance peaks can be identified as spectral lines463

whose frequencies are independent from the distance to the cavity. In that representation, res-464
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onant peaks can be identified and distinguished from long-period modulations of the primary465

scattered waves that shift their peak positions in the frequency domain with distance. By ap-466

plying a high-pass filter to the spectrograms, the resonance peaks can be enhanced, which could467

lead to a possible technique to detect acoustic resonances from cavities in real experiments.468
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total fields are shown. Fig. d shows a zoom into the cavity displaying the radial546

component of the scattered field for f = fres and the derivative of the spherical547

Bessel function j’(kr). In the surrounding elastic medium, vp = 3.0 km/s and548

vp/vs = 1.73 were chosen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30549

7 Resonant peak at Neumann eigenmode j04 calculated inside in the acoustic (a)550

and outside in the elastic (b) domain of the gas-filled cavity with different densities. 31551

8 Phase difference of displacement inside and outside the cavity for varying density552

of the acoustic medium (as labeled). The velocity of the acoustic medium is fixed553

to the values of (a) a gas-filled (vp = 300 m/s) and (b) a fluid-filled (vp = 1400 m/s)554

cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31555

9 Resonance peak inside (a) vs. outside (b) the cavity at Neumann eigenmode j13556

for a fluid-filled cavity with different densities. . . . . . . . . . . . . . . . . . . . . 32557

10 Locations of receivers with respect to the cavity and the incident plane wave for558

the calculated synthetic seismograms. For the red marked receiver, the orienta-559

tion of the L- and Q-components that are used to separate longitudinal (P) and560

transversal (S) displacements from the scattered wave-field are depicted. . . . . . 32561

11 Spatial spectrograms: Spatial variation of the amplitude spectrum of the scattered562

wave-field from the cavity for gas-filled inclusion (a,c) and fluid-filled inclusion563

(b,d). Dashed vertical black lines denote the positions of acoustic eigenmodes564

of the cavity with fixed boundaries. In c) and d) a high-pass filter was applied565

to the spectrum in order to suppress long amplitude variations and enhance the566

eigenmodes. Note that in c) the frequency range is restricted to 0 to 32.14 Hz,567

which is chosen to show the same eigenmode range in the gas-filled and fluid-filled568

case in c) and d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33569

22

A
cc

ep
te

d 
A

rti
cl

e

 
This article is protected by copyright. All rights reserved.



Seismic resonances of spherical acoustic cavities

12 Synthetic seismograms derived from total (a-b) and scattered (c-d) field for in-570
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Seismic resonances of spherical acoustic cavities

(a) (b)

(c) (d)

Figure 11: Spatial spectrograms: Spatial variation of the amplitude spectrum of the scattered wave-field
from the cavity for gas-filled inclusion (a,c) and fluid-filled inclusion (b,d). Dashed vertical
black lines denote the positions of acoustic eigenmodes of the cavity with fixed boundaries. In
c) and d) a high-pass filter was applied to the spectrum in order to suppress long amplitude
variations and enhance the eigenmodes. Note that in c) the frequency range is restricted
to 0 to 32.14 Hz, which is chosen to show the same eigenmode range in the gas-filled and
fluid-filled case in c) and d).
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(a) Z-component of total field.
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(b) X-component of total field
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(c) L-component of scattered field
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(d) Q-component of scattered field

Figure 12: Synthetic seismograms derived from total (a-b) and scattered (c-d) field for incident plane
P-wave at a gas-filled cavity. In a) and b) vertical and horizontal components of the total
field are shown. c) and d) show rotated seismograms with respect to the station location and
the cavities center in order to separate longitudinal and transversal particle motion.
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(a) Z-component of total field.
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(b) X-component of total field
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(c) L-component of scattered field
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(d) Q-component of scattered field

Figure 13: Synthetic seismograms derived from total (a-b) and scattered (c-d) field for incident plane
P-wave at a fluid-filled cavity. In a) and b) vertical and horizontal components of the total
field are shown. c) and d) show rotated seismograms with respect to the station location and
the cavities center in order to separate longitudinal and transversal particle motion.
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0−3600 s

0−30 s

a

c

b

d

HP−filtered

Figure 20: Spectrum and high-pass filtered spectrum derived from synthetic seismograms taking into
account 30 s (a,b) and 1h (c,d) of the seismogram considering intrinsic attenuation (green
solid line) and for the unattenuated case (black dashed line).
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location medium vp [m/s] vs [m/s] ρ [kg/m3]

vacuum 0 0 0

inside acoustic (gas) 300 0 1

acoustic (fluid) 1400 0 1000

outside elastic 4000 2312 2700

Table 1: Choice of the acoustic and elastic parameters for the medium inside and outside the cavity,
respectively.

Appendix618

The synthetic experiment discussed in section ”Wave-field along seismic profile” is repeated619

for the back-scattering domain, i.e. the incident wave is approaching the cavity from the top,620

while the station profile is located 250 m above the cavity as display in Fig. A.1. Spatial621

spectrograms for the gas- and fluid-filled cavity are shown in Fig. A.2. The corresponding622

synthetic seismograms for the gas-filled and fluid-filled cavity are shown in Fig. A.3 and Fig. A.4,623

respectively. Qualitatively the results resemble the ones from Fig. 11, 12 and 13. The main624

differences in the spectrograms are the different background pattern in Fig. A.2 a and b. In625

the synthetic seismograms the incident wave, that is displayed in Fig. A.3 a and Fig. A.4 a at626

t ≈ −0.08 s is more separated from the scattered field. Since no shadow zone appears in the627

back-scattering domain, the L-component of the scattered field shown in Fig. A.3 c and Fig. A.4628

c is smoother compared to the transmission regime displayed in Fig. 12 c and Fig. 13 c. Note629

that the origin of the coordinate system is the center of the cavity that the incident wave crosses630

at t = 0.631
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(a) Z-component of total field.
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(b) X-component of total field
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(c) L-component of scattered field
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(d) Q-component of scattered field

Figure A.3: Same as Fig. 12 for the back-scattering domain.
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(a) Z-component of total field.
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(c) L-component of scattered field
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(d) Q-component of scattered field

Figure A.4: Same as Fig. 13 for the back-scattering domain.

45

A
cc

ep
te

d 
A

rti
cl

e

 
This article is protected by copyright. All rights reserved.




